50% of the moon is always illuminated, however during it's quarter phase means that we only see a quarter of what's really lit up. So it LOOKS like the moon is only 25% lit and 75% dark, it's truly 50/50. We only see that 25% since we can see it from one angle.
Answer:
I = I₀ + M(L/2)²
Explanation:
Given that the moment of inertia of a thin uniform rod of mass M and length L about an Axis perpendicular to the rod through its Centre is I₀.
The parallel axis theorem for moment of inertia states that the moment of inertia of a body about an axis passing through the centre of mass is equal to the sum of the moment of inertia of the body about an axis passing through the centre of mass and the product of mass and the square of the distance between the two axes.
The moment of inertia of the body about an axis passing through the centre of mass is given to be I₀
The distance between the two axes is L/2 (total length of the rod divided by 2
From the parallel axis theorem we have
I = I₀ + M(L/2)²
Answer:
Explanation:
Case 1:
mass = m
initial velocity = vo
final velocity = 0
height = y
Use third equation of motion
v² = u² - 2as
0 = vo² - 2 g y
y = vo² / 2g ... (1)
Case 2:
mass = 2m
initial velocity = 2vo
final velocity = 0
height = y '
Use third equation of motion
v² = u² - 2as
0 = 4vo² - 2 g y'
y ' = 4vo² / 2g
y' = 4 y
Thus, the second rock reaches the 4 times the distance traveled by the first rock.
Answer:
Workdone = 465766038 Joules.
Explanation:
<u>Given the following data;</u>
Mass = 1167
Initial velocity = 10m/s
Final velocity =28m/s
To find the workdone;
We know that from the workdone theorem, the workdone by an object or a body is directly proportional to the kinetic energy possessed by the object due to its motion.
Mathematically, it is given by the equation;
W = Kf - Ki
W = ½MVf² - ½MVi²
Substituting into the equation
W = ½(1167)*28² - ½(1167)*10²
W = ½ * 1361889* 784 - ½ * 1361889 * 100
W = 533860488 - 68094450
Workdone = 465766038 Joules.
Every point on the surface must have the same rotational speed.
Otherwise some places would rotate away from other places.
If the next block of your city rotated faster than the block that you live on,
then you could sit at home, look out the window, and watch your school
rotate past your house.
The map of the continents on the Earth would change constantly.