<span>diminution in the density of something, especially air or a gas.</span>
Answer:
When she stops at a fast pace the energy and wind will take the cup forward and it will most likeley brake
Explanation:
I'm not entirely sure this is what you were looking for but I hope this helped!
PLEASE MARK ME AS BRAINLIEST
Answer:
The possible range of wavelengths in air produced by the instrument is 7.62 m and 0.914 m respectively.
Explanation:
Given that,
The notes produced by a tuba range in frequency from approximately 45 Hz to 375 Hz.
The speed of sound in air is 343 m/s.
To find,
The wavelength range for the corresponding frequency.
Solution,
The speed of sound is given by the following relation as :

Wavelength for f = 45 Hz is,


Wavelength for f = 375 Hz is,


So, the possible range of wavelengths in air produced by the instrument is 7.62 m and 0.914 m respectively.
The two types of motion exerted in bicycle are:
1. rotary motion
2. linear motion
Answer:
we assume that it starts with a velocity of 10m/s. At 2m height above ground level, its velocity decreases at 3m above ground level
for its way down the velocity at 3m on its way down is more than its velocity at 2m on its way down.
Explanation:
A student throws a small rock straight upwards. The rock rises to its highest point and then falls back down. How does the speed of the rock at 2m on the way down compare with its speed at 2m on the way up?
It decreases in speed on its way down and increases in speed on its way down.
it decreases in speed on its way up because the the vertical motion is against the earths gravitational pull on an object to the earth's center
.It increases in speed on his way down because its under the influence of gravity
from newton's equation of motion we can check by
using V^2=u^2+2as
we assume that it starts with a velocity of 10m/s. At 2m height above ground level, its velocity decreases at 3m above ground level
for its way down the velocity at 3m on its way down is more than its velocity at 2m on its way down.