(1) The wavelength of the wave is 1.164 m.
(2) The velocity of the wave is 23.7 m/s.
(3) The maximum speed in the y-direction of any piece of the string is 6.14 m/s.
<h3>
Wavelength of the wave</h3>
A general wave equation is given as;
y(x, t) = A sin(Kx - ωt)
<h3>Velocity of the wave</h3>
v = ω/K
From the given wave equation, we have,
y(x, t) = 0.048 sin(5.4x - 128t)
v = ω/K
where;
- ω corresponds to 128
- k corresponds to 5.4
v = 128/5.4
v = 23.7 m/s
<h3>Wavelength of the wave</h3>
λ = 2π/K
λ = (2π)/(5.4)
λ = 1.164 m
<h3>Maximum speed of the wave</h3>
v(max) = Aω
where;
- A is amplitude of the wave
- ω is angular speed of the wave
v(max) = (0.048)(128)
v(max) = 6.14 m/s
Thus, the wavelength of the wave is 1.164 m.
The velocity of the wave is 23.7 m/s.
The maximum speed in the y-direction of any piece of the string is 6.14 m/s.
Learn more about wavelength here: brainly.com/question/10728818
#SPJ1
Answer:

Explanation:
P = Power = 50 kW
n = Number of photons per second
h = Planck's constant = 
= Frequency = 781 kHz
r = Distance at which the photon intensity is i = 1 photon/m²
Power is given by

Photon intensity is given by

The distance is 
Answer:
B) the change in momentum.
Explanation:
The impulse is defined as the product between the force applied on an object (F) and the duration of the collision (
):
(1)
We can rewrite the force by using Newton's second law, as the product between mass (m) and acceleration (a):

So, (1) becomes

Now we can also rewrite the acceleration as ratio between the change in velocity and change in time:
. If we substitute into the previous equation, we find

And the quantity
is equivalent to the change in momentum,
.
A. Fnet=ma
6*2=12N of force acting on the object in the direction it is accelerating
B. Fnet=ma
4*2=8N of force action on the object in the direction it is accelerating