Answer:
a) The current is i = 1.2 A
b) The charge is Q = 17280 C
c) The energy is E = 43200 J
Explanation:
a) The current is given by the ohm's law wich is:
i = V/R = 3/2.5 = 1.2 A
b) Since the charge is steady we can use the following equation to find the charge amount in that time:
i = Q/t
Q = t*i
Where t is in seconds, so we have 4h * 3600 = 14400 s
Q = 1.2*14400 = 17280 C
c) The energy is the power delivered to the toy multiplied by the time:
P = 1.2*2.5 = 3 W
E = P*t = 3*14400 = 43200 J
Answer:
a) v₁fin = 3.7059 m/s (→)
b) v₂fin = 1.0588 m/s (→)
Explanation:
a) Given
m₁ = 0.5 Kg
L = 70 cm = 0.7 m
v₁in = 0 m/s ⇒ Kin = 0 J
v₁fin = ?
h<em>in </em>= L = 0.7 m
h<em>fin </em>= 0 m ⇒ U<em>fin</em> = 0 J
The speed of the ball before the collision can be obtained as follows
Einitial = Efinal
⇒ Kin + Uin = Kfin + Ufin
⇒ 0 + m*g*h<em>in</em> = 0.5*m*v₁fin² + 0
⇒ v₁fin = √(2*g*h<em>in</em>) = √(2*(9.81 m/s²)*(0.70 m))
⇒ v₁fin = 3.7059 m/s (→)
b) Given
m₁ = 0.5 Kg
m₂ = 3.0 Kg
v₁ = 3.7059 m/s (→)
v₂ = 0 m/s
v₂fin = ?
The speed of the block just after the collision can be obtained using the equation
v₂fin = 2*m₁*v₁ / (m₁ + m₂)
⇒ v₂fin = (2*0.5 Kg*3.7059 m/s) / (0.5 Kg + 3.0 Kg)
⇒ v₂fin = 1.0588 m/s (→)
The mechanical advantage of a machine is the ratio of the force produced by the machine to the force applied to it. Therefore, we may calculate the applied force using:
Mechanical advantage = force by machine / force applied
6 = 2 / force applied
Force applied = 1/3
Thus, the distance that the effort must move will be 1/3 inch
Are their any multiple choice questions? Also you said, "<span>Birds that have adapted to temperatures in their environment must find a way to adapt." It says they already adapted lol</span>