Answer:
1.28 m
Explanation:
Generally, pressure of fluid is given by
where g is acceleration due to gravity, h is the height and
is the density
Considering that the pressure for mercury is same as for blood only that the height and density of fluid are different then
Since g is constant, then
Making
the subject of the formula then

Where subscripts m and b denote mercury and blood respectively
Assuming density of blood is 1060 Kg/m3, density of mercury as 13600 Kg/m3 and substituting height of mercury for 0.1 m then

The first law of thermodynamics states the conservation of energy and heat where the total energy in an isolated system may be transformed into another, but never created or destroyed. If 286 J of energy was released to the room, then also 286 J of energy was also removed from food in that refrigerator assuming it is an isolated system. :)
Read more on Brainly -
brainly.com/sf/question/3844753I tried to help
The electron is accelerated through a potential difference of

, so the kinetic energy gained by the electron is equal to its variation of electrical potential energy:

where
m is the electron mass
v is the final speed of the electron
e is the electron charge

is the potential difference
Re-arranging this equation, we can find the speed of the electron before entering the magnetic field:

Now the electron enters the magnetic field. The Lorentz force provides the centripetal force that keeps the electron in circular orbit:

where B is the intensity of the magnetic field and r is the orbital radius. Since the radius is r=25 cm=0.25 m, we can re-arrange this equation to find B:
Answer:
the difference of electrical potential between two points.
Explanation: