Answer:
The mass of the massive object at the center of the Milky Way galaxy is 
Explanation:
Given that,
Diameter = 10 light year
Orbital speed = 180 km/s
Suppose determine the mass of the massive object at the center of the Milky Way galaxy.
Take the distance of one light year to be 9.461×10¹⁵ m. I was able to get this it is 4.26×10³⁷ kg.
We need to calculate the radius of the orbit
Using formula of radius



We need to calculate the mass of the massive object at the center of the Milky Way galaxy
Using formula of mass

Put the value into the formula


Hence, The mass of the massive object at the center of the Milky Way galaxy is 
Answer:
Significant digits (also called significant figures or “sig figs” for short) indicate the precision of a measurement. A number with more significant digits is more precise. For example, 8.00 cm is more precise than 8.0 cm.
Answer:
D. shortest wavelength
Explanation:
Photons with the highest energy have the shortest wavelength. The shorter the wavelength, the higher the energy of a photon.
A photon is a quantity that transmits electromagnetic energy from one place to the other.
- Gamma rays have photons that transmits the highest amount of energy.
- The rays have the shortest wavelength and highest frequency of all electromagnetic radiations.
Energy, wavelength and frequency of a photon are connected using the expression:
E = h f =
E is the energy
h is the Planck's constant
f is the frequency.
Answer:
Explanation:
Electric forces exist among stationary electric charges; both electric and magnetic forces exist among moving electric charges. ... The magnetic force between two moving charges may be described as the effect exerted upon either charge by a magnetic field created by the other.
Answer:
it must be possible to prove it wrong
Explanation: