Answer:
20 N
Explanation:
<em>Newton's second Law of motion</em> law states that If there is a external force acting on an object. Then the rate of change of momentum of that object is directly proportional to the force acting on its.
- the net force acting upon the object <em>(F)</em>
- the mass of the object. <em>(m)</em>
- <em>V </em>Final velocity of the object
- U initial velocity of the object
- mV -Final momentum of the object
- mU - Initial momentum of the object
Due to momentum change of that object, momentum change. We can write the equation bellow this,
F = (mV-mU)/t
When m is constant we can write the above expression like this,
F = m (V-U)/t
There for
(V-U)/t = a ( Rate of change of velocity can be denoted as acceleration )
F = m× a
we can state this in mathematically,
a = F/m
in another representation
F = m*a
Net Force = mass*acceleration
= 10 * 2
= 20 N
object is subjected to a negative acceleration due to the friction.
Explanation:
the features or properties of motion in an object
Answer:
C_{y} = 4.96 and θ' = 104,5º
Explanation:
To add several vectors we can decompose each one of them, perform the sum on each axis, to find the components of the resultant and then find the module and direction.
Let's start by decomposing the two vectors.
Vector A
sin θ =
/ A
cos θ = Aₓ / A
A_{y} = A sin θ
Ax = A cos θ
A_{y} = 4.9 sin 31 = 2.52
Ax = 4.9 cos 31 = 4.20
Vector B
B_{y} = B sin θ
Bx = B cos θ
B_{y} = 6 sin 156 = 2.44
Bx = 6 cos 156 = -5.48
The components of the resulting vector are
X axis
Cx = Ax + B x
Cx = 4.20 -5.48
Cx = -1.28
Axis y
C_{y} = Ay + By
C_{y} = 2.52 + 2.44
C_{y} = 4.96
Let's use the Pythagorean theorem to find modulo
C = √ (Cₙ²x2 + Cy2)
C = Ra (1.28 2 + 4.96 2)
C = 5.12
We use trigonemetry to find the angle
tan θ = C_{y} / Cₓ
θ’ = tan⁻¹ (4.96 / (1.28))
θ’ = 75.5
como el valor de Cy es positivo y Cx es negativo el angulo este en el segundo cuadrante, por lo cual el angulo medido respecto de eje x positivo es
θ’ = 180 – tes
θ‘= 180 – 75,5
θ' = 104,5º
Calculation, add them. 0.85 x 5 = 4.25 Ω