Electric
field strength = Electric force/charge
E = F/q
E = (1.8×10^-1) / (6.4×10^-7)
E = 2.81×10^5 NC^-1
Hope it helped!
I got you
Explanation:
normal force = 400 g cos 35
friction force up slope = .6 (400 g) cos 35
weight component down slope = 400 g sin 35
400 a = 400 g sin 35 - .6 (400 g cos 35)
a = g (sin 35 - .6 cos 35) = .082 g
I hope this helps you
Newton's second law of motion describes what happens to a body when an external force is applied to it.
Newton's second law of motion states that the force acting on an object is equal to the mass of that object times its acceleration. In mathematical form this is written as
F = ma
Where F is force , m is mass and a is acceleration. The math or logic behind this is that if you double the force, you double the acceleration, but if you double the mass, you cut the acceleration in half.
Answer:
Explanation:
we have to make charge inside the conductor zero because we know that electric field inside the conductor should be zero
so, the outer surface of the conductor should contain + 10 uC of charge and the inner surface contains -10 uC