You must burn 1.17 g C to obtain 2.21 L CO2 at
STP.
The balanced chemical equation is
C+02+ CO2.
Step 1. Convert litres of CO, to moles of CO2.
STP is 0 °C and 1 bar. At STP the volume of 1 mol
of an ideal gas is 22.71 L.
Moles of CO2= 2.21 L CO2 × (1 mol CO2/22.71 L
CO2) = 0.097 31 mol CO2
Step 2. Use the molar ratio of C:CO2 to convert
moles of CO to moles of C
Moles of C= 0.097 31mol CO2 × (1 mol C/1 mol
CO2) = 0.097 31mol C
Step 3. Use the molar mass of C to calculate the
mass of C
Mass of C= 0.097 31mol C × (12.01 g C/1 mol C) =
1.17 g C
It looks as if you are using the old (pre-1982)
definition of STP. That definition gives a value of
1.18 g C.
<h3>
Answer:</h3>
14 milliliters
<h3>
Explanation:</h3>
We are given;
Prepared solution;
- Volume of solution as 0.350 L
- Molarity as 0.40 M
We are required to determine the initial volume of HNO₃
- We are going to use the dilution formula;
- The dilution formula is;
M₁V₁ = M₂V₂
Rearranging the formula;
V₁ = M₂V₂ ÷ M₁
=(0.40 M × 0.350 L) ÷ 10.0 M
= 0.014 L
But, 1 L = 1000 mL
Therefore,
Volume = 14 mL
Thus, the volume of 10.0 M HNO₃ is 14 mL
<u>Answer:</u> The
for HCN (g) in the reaction is 135.1 kJ/mol.
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. The equation used to calculate enthalpy change is of a reaction is:
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(2\times \Delta H_f_{(HCN)})+(6\times \Delta H_f_{(H_2O)})]-[(2\times \Delta H_f_{(NH_3)})+(3\times \Delta H_f_{(O_2)})+(2\times \Delta H_f_{(CH_4)})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%282%5Ctimes%20%5CDelta%20H_f_%7B%28HCN%29%7D%29%2B%286%5Ctimes%20%5CDelta%20H_f_%7B%28H_2O%29%7D%29%5D-%5B%282%5Ctimes%20%5CDelta%20H_f_%7B%28NH_3%29%7D%29%2B%283%5Ctimes%20%5CDelta%20H_f_%7B%28O_2%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H_f_%7B%28CH_4%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![-870.8=[(2\times \Delta H_f_{(HCN)})+(6\times (-241.8))]-[(2\times (-80.3))+(3\times (0))+(2\times (-74.6))]\\\\\Delta H_f_{(HCN)}=135.1kJ](https://tex.z-dn.net/?f=-870.8%3D%5B%282%5Ctimes%20%5CDelta%20H_f_%7B%28HCN%29%7D%29%2B%286%5Ctimes%20%28-241.8%29%29%5D-%5B%282%5Ctimes%20%28-80.3%29%29%2B%283%5Ctimes%20%280%29%29%2B%282%5Ctimes%20%28-74.6%29%29%5D%5C%5C%5C%5C%5CDelta%20H_f_%7B%28HCN%29%7D%3D135.1kJ)
Hence, the
for HCN (g) in the reaction is 135.1 kJ/mol.
D.) the original components retain their individual properties
Explanation:
option A skeleton system is correct option
hope this helps you !