<u>Answer:</u> The volume of stock solution needed is 90 mL
<u>Explanation:</u>
To calculate the molarity of the diluted solution, we use the equation:

where,
are the molarity and volume of the stock sulfuric acid solution
are the molarity and volume of diluted sulfuric acid solution
We are given:

Putting values in above equation, we get:

Hence, the volume of stock solution needed is 90 mL
Answer:
The following reaction will occur at cathode:

Explanation:
The two half reaction during electrolysis of aqueous nickel sulfate will be
a) anode reaction :
Water will undergo oxidation and will evolve oxygen gas at anode as shown in the given reaction:

b) Cathode reaction: The reduction of Nickel ion will occur by gain of two electrons as shown in the given equation:

Thus the overall reaction will be:

The moles can be defined as the mass of the substance with respect to molar mass. The moles of potassium nitrate is 1 mol.
<h3>How to calculate moles of a substance?</h3>
The moles of a compound can be calculated from:

The molarity can be defined as the moles of solute in a liter of solution.
The molarity can be expressed as:

The molarity of potassium nitrate solution is 2 M, and the volume is 500 mL.
The moles of potassium nitrate is given as:

The moles of potassium nitrate in 2 M, 500 mL solution are 1 mol.
Learn more about moles, here:
brainly.com/question/15209553
Answer:
See the answer below
Explanation:
<em>The slide could have broken due to the ramming of the objective (especially the high power objectives) into the slide on the stage of the microscope while trying to bring the object on the slide into focus.</em>
It is recommended to <u>start with the lowest objective while trying to focus a slide</u>. Thereafter, the next higher objective can be switched to and the image brought into focus once again. This can be repeated until the desired magnification of the image is reached.
However, <u>at higher objective powers, the coarse adjustment knob should be avoided </u>to avoid the objectives touching/breaking the slide. Instead, the fine adjustment knob should be used.
Hence, the breaking of the slide in the illustration could have been due to the use of the coarse adjustment knob at higher objective powers and the ramming of the objective into the slide.
Plants<span> have two </span>transport<span> systems to move food, </span>water and minerals<span> through their roots, stems and leaves. These systems use continuous tubes called xylem and phloem, and together they are known as </span>vascular<span> bundles. Thank you for your time and I hope this has helped you. See you next time brainy:)</span>