Answer:
North of west
Explanation:
Given
Plane wishes to fly in west
but wind with speed 33.9 km/h towards south obstructing its path
so plane must fly at an angle of \theta w.r.t west such that it final velocity is towards west
Plane absolute speed=195 km/h
To fly towards west velocity in Y direction should be zero
thus 

so Plane should head towards
North of west in order to fly in west.
So plane
actual velocity is

Answer:
65
Explanation:
The resonant frequencies for a fixed string is given by the formula nv/(2L).
Where n is the multiple
.
v is speed in m/s
.
The difference between any two resonant frequencies is given by v/(2L)= fn+1 – fn
fundamental frequency means n=1
i.e fn+1 – fn = 390 -325
= 65
I'll be happy to solve the problem using the information that
you gave in the question, but I have to tell you that this wave
is not infrared light.
If it was a wave of infrared, then its speed would be close
to 300,000,000 m/s, not 6 m/s, and its wavelength would be
less than 0.001 meter, not 12 meters.
For the wave you described . . .
Frequency = (speed) / (wavelength)
= (6 m/s) / (12 m)
= 0.5 / sec
= 0.5 Hz .
(If it were an infrared wave, then its frequency would be
greater than 300,000,000,000 Hz.)