The formula for energy release per kilogram of fuel burned is energy release per kg=6.702*10-13. and 19. J 1 Mev = 1.602 X 10 T
Calculate the energy in joules per kilogram of reactants given MeV per reaction. Energy is the ability or capacity to perform tasks, such as the ability to move an item (of a certain mass) by exerting force. Energy can exist in many different forms, including electrical, mechanical, chemical, thermal, or nuclear, and it can change its form.
Think of a mole of plutonium-239 (molar mass: 239 grams) as a mole of "reactions."
Energy used in the US per person annually = 3-5 X 1011
Population (number of people) = 3.108The required mass of the fuel is 3.5x1011 x3-1x10 8x 10)/6.703 X1013 kg. the mass required: 1.62 x 1033 kg Mev in Joules 6 is equal to 101.60*I0-
19. J 1 Mev = 1.602 X 10 T, which translates to 1.602*1013/2.39x10-3 energy release per kilogram, or 6.702*10-13.
To learn more about Energy please visit -
brainly.com/question/27671072
#SPJ1
To develop this problem it is necessary to apply the concepts given in the balance of forces for the tangential force and the centripetal force. An easy way to detail this problem is through a free body diagram that describes the behavior of the body and the forces to which it is subject.
PART A) Normal Force.


Here,
Normal reaction of the ring is N and velocity of the ring is v




PART B) Acceleration





Negative symbol indicates deceleration.
<em>NOTE: For the problem, the graph in which the turning radius and the angle of suspension was specified was not supplied. A graphic that matches the description given by the problem is attached.</em>
Answer:
4. 7.59276
Explanation:
Add up the x components:
Aₓ + Bₓ + Cₓ = 5 − 1.6 + 2.4 = 5.8
Add up the y components:
Aᵧ + Bᵧ + Cᵧ = -2.4 + 3.3 + 4 = 4.9
Use Pythagorean theorem to find the magnitude:
√(x² + y²)
√(5.8² + 4.9²)
√57.65
7.59276
How would you describe the behavior of particles in a solid?