Answer:
The diode equation gives an expression for the current through a diode as a function of voltage.
Explanation:
Answer:
No
Explanation:
Crystizaltion of magma turns into indeginous rocks which then turns into sediment after weathering and erosion.
Answer:
Transformers are used to increase or decrease the voltage of AC currents
Explanation:
A transformer is a device consisting of two coils (called primary and secondary coil) wrapped at the two sides of a soft iron core. When an AC current is present in the primary coil, it induces a magnetic field inside the core, and the presence of this changing magnetic field induces a voltage (and a current) into the secondary coil.
The voltages in the primary and the secondary coil are related by the transformer equation:

where
Vp, Vs are the voltages in the primary and secondary coil
Np, Ns are the number of turns in the primary and secondary coil
There are two types of transformers:
- Step-up transformers: these have
, so that
, which means that they increase the voltage. They are used to increase the voltage of the AC current produced by the power plants, before being sent into the transmission lines.
- Step-down transformers: these have
, so that
, which means that they decrease the voltage. They are used at the end of the transmission lines, before the houses, in order to decrease the voltage and allow the household appliances to work properly (in fact, household appliances need lower voltages to work)
Answer:
It is said that the negative charge moves because the electrons in the atoms of any object are taken or given to the atoms of another object.
Explanation:
The atom is made up of protons, electrons and neutrons. The number of protons is exactly the same to the number of electrons for a certain element. For example, hydrogen: it has a proton, and therefore, an electron.
The electron has a negative charge. The proton has a positive charge. And the neutron has no charge, so it is neutral. While the atom has the same number of protons and electrons, it will not be electrically charged.
An example of how a charge exchange occurs between two objects is through the case of rubbing. This makes the atoms of the two objects close enough that there is an electron transfer, causing any of the objects to gain or lose electrons as a consequence of each other interaction. In the case of transferring electrons, the atom will have a greater number of protons, so it will be positively charged. When the atom receive electrons, it will have a greater number of electrons, so it will be negatively charged.
Therefore, since it is the electrons that move from one atom to another, then it is the negative charge that moves (<em>characterized by the electrons</em>) and not the positive charge (<em>characterized by the protons</em>).
To answer this problem, we will use the equations of motions.
Part (a):
For the ball to start falling back to the ground, it has to reach its highest position where its final velocity will be zero.
The equation that we will use here is:
v = u + at where
v is the final velocity = 0 m/sec
u is the initial velocity = 160 m/sec
a is acceleration due to gravity = -9.8 m/sec^2 (the negative sign is because the ball is moving upwards, thus, its moving against gravity)
t is the time that we want to find.
Substitute in the equation to get the time as follows:
v = u + at
0 = 160 - 9.8t
9.8t = 160
t = 160/9.8 = 16.3265 sec
Therefore, the ball would take 16.3265 seconds before it starts falling back to the ground
Part (b):
First, we will get the total distance traveled by the ball as follows:
s = 0.5 (u+v)*t
s = 0.5(160+0)*16.3265
s = 1306.12 meters
The equation that we will use to solve this part is:
v^2 = u^2 + 2as where
v is the final velocity we want to calculate
u is the initial velocity of falling = 0 m/sec (ball starting falling when it reached the highest position, So, the final velocity in part a became the initial velocity here)
a is acceleration due to gravity = 9.8 m/sec^2 (positive as ball is moving downwards)
s is the distance covered = 1306.12 meters
Substitute in the above equation to get the final velocity as follows:
v^2 = u^2 + 2as
v^2 = (0)^2 + 2(9.8)(1306.12)
v^2 = 25599.952 m^2/sec^2
v = 159.99985 m/sec
Therefore, the velocity of the ball would be 159.99985 m/sec when it hits the ground.