If it produces 20J of light energy in a second, then that 20J is the 10% of the supply that becomes useful output.
20 J/s = 10% of Supply
20 J/s = (0.1) x (Supply)
Divide each side by 0.1:
Supply = (20 J/s) / (0.1)
<em>Supply = 200 J/s </em>(200 watts)
========================
Here's something to think about: What could you do to make the lamp more efficient ? Answer: Use it for a heater !
If you use it for a heater, then the HEAT is the 'useful' part, and the light is the part that you really don't care about. Suddenly ... bada-boom ... the lamp is 90% efficient !
D, the plant takes Solar/Light energy and converts it into chemical energy.
Answer:
0.114 kg or 114 g
Explanation:
From the diagram attaches,
Taking the moment about the fulcrum,
sum of clockwise moment = sum of anticlockwise moment.
Wd = W'd'
Where W = weight of the mass, W' = weight of the meter rule, d = distance of the mass from the fulcrum, d' = distance of the meter rule.
make W' the subject of the equation
W' = Wd/d'................ Equation 1
Given: W = mg = 0.0515(9.8) = 0.5047 N, d = (39.2-16) = 23.2 cm, d' = (49.7-39.2) = 10.5 cm
Substitute these values into equation 1
W' = 0.5047(23.2)/10.5
W' = 1.115 N.
But,
m' = W'/g
m' = 1.115/9.8
m' = 0.114 kg
m' = 114 g
A force is calculated in neutons