The force exerted by a magnetic field on a wire carrying current is:

where I is the current, L the length of the wire, B the magnetic field intensity, and

the angle between the wire and the direction of B.
In our problem, the force is F=0.20 N. The current is I=1.40 A, while the length of the wire is L=35.0 cm=0.35 m. The angle between the wire and the magnetic field is

, so we can re-arrange the formula and substitute the numbers to find B:
Sound waves actually travel much faster in water than air, but words and the direction of the noise are distorted.
Answer:
time rising = 34 / 9.8 = 3.47 sec
total time in air = 2 * 3.47 sec = 6.94 sec
(time rising must equal time falling)
R = 17 m/s * 6.94 s = 118 m
Can also use range formula
R = v^2 sin (2 theta) / g
tan theta = 34 / 17 = 2
theta = 63.4 deg
2 theta = 126.9 deg
sin 126.9 = .8
v^2 = 17^2 + 34^2 = 1445 m^2/s^2
R = 1445 * .8 / 9.8 = 118 m agreeing with answer found above
Sample Response: The water is cooler than the sand because it has a higher specific heat value. This means that it takes longer for the water to increase in temperature, making it feel cooler than the sand, which warms up more quickly.