Magnesium has atomic no 12
Electronic configuration given by
Or
Answer:
THE VOLUME OF 0.200M CALCIUM HYDROXIDE NEEDED TO NEUTRALIZE 35 mL of 0.050 M NITRIC ACID IS 43.75 mL.
Explanation:
Using
Ca VA / Cb Vb = Na / Nb
Ca = 0.0500 M
Va = 35 mL
Cb = 0.0200 M
Vb = unknown
Na = 2
Nb = 1
Equation for the reaction:
Ca(OH)2 + 2HNO3 --------> Ca(NO3)2 + 2H2O
So therefore, we make Vb the subject of the equation and solve for it
Vb = Ca Va Nb / Cb Na
Vb = 0.0500 * 35 * 1 / 0.0200 * 2
Vb = 1.75 / 0.04
Vb = 43.75 mL
The volume of 0.02M calcium hydroxide required to neutralize 35 mL of 0.05 M nitric acid is 43.75 mL
The temperature stays the same when a solid changes to a liquid because energy is required to break the forces between particles of water therefore changing the state of matter and separating the particles away from each other.
When a liquid boils, the energy is needed by the particles to escape the surface of the liquid and boil. Instead of raising the temperature, the energy goes into the particles' kinetic energy store so it has enough speed to escape the surface of the liquid.
<u>Answer:</u> C) be hypertonic to Tank B.
<u>Explanation: </u>
<u>
The ability of an extracellular solution to move water in or out of a cell by osmosis</u> is known as its tonicity. Additionally, the tonicity of a solution is related to its osmolarity, which is the <u>total concentration of all the solutes in the solution.
</u>
Three terms (hypothonic, isotonic and hypertonic) are used <u>to compare the osmolarity of a solution with respect to the osmolarity of the liquid that is found after the membrane</u>. When we use these terms, we only take into account solutes that can not cross the membrane, which in this case are minerals.
- If the liquid in tank A has a lower osmolarity (<u>lower concentration of solute</u>) than the liquid in tank B, the liquid in tank A would be hypotonic with respect to the latter.
- If the liquid in tank A has a greater osmolarity (<u>higher concentration of solute</u>) than the liquid in tank B, the liquid in tank A would be hypertonic with respect to the latter.
- If the liquid in tank A has the same osmolarity (<u>equal concentration of solute</u>) as the liquid in tank B, the liquid in tank A would be isotonic with respect to the latter.
In the case of the problem, option A is impossible because the minerals can not cross the membrane, since it is permeable to water only. There is no way that the concentration of minerals decreases in tank A, so <u>the solution in this tank can not be hypotonic with respect to the one in Tank B. </u>
Equally, both solutions can not be isotonic and neither we can say that the solution in tank A has more minerals that the one in tank B because the liquid present in tank B is purified water that should not have minerals. Therefore, <u>options B and D are also not correct.</u>
Finally, the correct option is C, since in the purification procedure the water is extracted from the solution in tank A to obtain a greater quantity of purified water in tank B. In this way, the solution in Tank A would be hypertonic to Tank B.
You need to find which intermolecular forces are between the molecules
dipole-dipole,h bonds, etc.
I'm not very good at explaining but this is what my prof said to help us
Identify the class of the molecule or molecules you are given. Are they nonpolar species, ions or
do they have permanent dipoles? Is there only one species or are there two?
In the case of ONE species (i.e., a pure substance), the intermolecular forces will be between
molecules of the same type. So if you are dealing with ions, the intermolecular forces will be ION-
ION or IONIC. If you are dealing with dipoles, then the intermolecular forces will be DIPOLE-
DIPOLE. If you are dealing with nonpolar species, the intermolecular forces will be DISPERSION
or VAN DER WAALS or INDUCED DIPOLE-INDUCED DIPOLE (the last three are desciptions
of the same interaction; regrettably we cannot call them nonpolar-nonpolar!).
In the case of TWO species (i.e., a mixture), the intermolecular forces will be between molecules of
one type with molecules of the second type. For example, ION-DIPOLE interactions exist between
ions dissolved in a dipolar fluid such as water.