Answer:
Given, Mass of an object, m = 2kg
velocity, v = 2m/s
We have,
KE = 1/2 m v²
= 1/2 × 2 (2)²
= 1/2 × 8
= 4J
Hence, 4J is the required Kinetic energy.
Answer:
93.5 moles N₂
Explanation:
To find the moles, you need to use the Ideal Gas Law. The equation looks like this:
PV = nRT
In this equation,
-----> P = pressure (atm)
-----> V = volume (L)
-----> n = number of moles
-----> R = constant (0.0821 atm*L/mol*K)
-----> T = temperature (K)
You can plug the given values into the equation and simplify to find moles. The final answer should have 3 sig figs to match the lowest number of sig figs among the given values.
P = 95.0 atm R = 0.0821 atm*L/mol*K
V = 224 L T = 2773 K
n = ?
PV = nRT
(95.0 atm)(224 L) = n(0.0821 atm*L/mol*K)(2773 K)
21280 = n(227.6633)
93.5 = n
Answer:
what to do in this question
Answer:
MEANS:
1 = 97.7
2 = 74.3
3 = 50
4 = 30
5 = 13
UNCERTAINTY:
gimme a sec, ill put it in the comments under this
Answer:
1.414 Moles
Solution:
Data Given:
Mass of MgS₂O₃ = 193 g
M.Mass of MgS₂O₃ = 136.43 g.mol⁻¹
Moles = ?
Formula Used:
Moles = Mass ÷ M.Mass
Putting values,
Moles = 193 g ÷ 136.43 g.mol⁻¹
Moles = 1.414 mol