1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ser-zykov [4K]
2 years ago
8

A projectile is launched from the ground at an angle of 60o above the horizontal. At what point in its trajectory does it have t

he maximum value of acceleration? Neglect air resistance. It has the maximum value of acceleration just after it leaves the ground It has the maximum value of acceleration just before it lands on the ground Its acceleration is constant everywhere in its trajectory. It has the maximum value of acceleration halfway to the top of its trajectory. It has the maximum value of acceleration at the top of its trajectory.
Physics
1 answer:
Elodia [21]2 years ago
5 0

Answer:

It's constant everywhere in its trajectory.

Explanation:

the projectile was launched with an initial velocity, the only acceleration that is affecting the projectile's velocity is gravity.

The acceleration of gravity is practically equal everywhere on earth, so during its trajectory, we have to take into consideration only the acceleration because of gravity.

This is only correct because the projectile was launched with an initial velocity and it's not accelerating from rest and then falls.

You might be interested in
PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!
EleoNora [17]

The basketball is gaining kinetic and losing potential energy is the answer


8 0
3 years ago
Read 2 more answers
You are on the south bank of the river in your canoe you need to reach the north bank you know that you can row your canoe at 2
Anna71 [15]

Answer:

(θ) = 60°

Explanation:

Given:

Speed of canoe Vc = 2 m/s

Speed of River Vr = 1 m/s

Computation:

Vc (Cosθ) = Vr

2 (Cosθ) = 1

(Cosθ) =  1 / 2

(Cosθ) = (Cos60)

(θ) = 60°

3 0
2 years ago
The masses of the Moon and Earth are 7.35 x 1022 kg and 5.97 x 1024 kg, respectively. The strength of the gravitational force be
bixtya [17]

Answer:

Distance between centre of Earth and centre of Moon is 3.85 x 10⁸ m

Explanation:

The attractive force experienced by two mass objects is known as Gravitational force.

The gravitational force is determine by the relation:

F=\frac{Gm_{1} m_{2} }{d^{2} }      ....(1)

According to the problem,

Mass of Moon, m₁ = 7.35 x 10²² kg

Mass of Earth, m₂ = 5.97 x 10²⁴ kg

Gravitational force experienced by them, F = 1.98 x 10²⁰ N

Universal gravitational constant, G = 6.67 x 10⁻¹¹ Nm²kg⁻²

Substitute these values in equation (1).

1.98\times10^{20} =\frac{6.67\times10^{-11}\times7.35\times10^{22}\times5.97\times10^{24} }{d^{2} }

d^{2}=\frac{2.93\times10^{37}}{1.98\times10^{20}}

d=\sqrt{1.48\times10^{17}}

d = 3.85 x 10⁸ m

3 0
3 years ago
the displacement (in centimeters) of a particle moving back and forth along a straight line is given by the equation of motion s
12345 [234]

The average velocity or displacement of a particle for the first time interval is <u>Δs / Δt = 6 cm/s.</u>

Solution:

As we know that displacement is calculated in centimeters and the unit of time is second.

The average velocity for the first interval [1,2] is given

Δs / Δt = s (t2) - s (t) / t2 - t1

Δs / Δt = 2sin2  π  + 3cos 2 π -  ( 2sin π + 3cos π ) / 2 - 1

Δs / Δt = 2(0) + 3(1) - 2(0) - 3 (-1) / 1

Δs / Δt = 6 cm/s

Thus the average velocity or displacement of a particle for the first time interval is Δs / Δt = 6 cm/s

If you need to learn more about displacement click here:

brainly.com/question/28370322

#SPJ4

The complete question is:

The displacement of a particle moving back and forth along a line is given by the following equation s(t) = 2sin π t + 3cos π t. Estimate the instantaneous velocity of the particle when t = 1

4 0
1 year ago
Show that rigid body rotation near the Galactic center is consistent with a spherically symmetric mass distribution of constant
irakobra [83]

To solve this problem we will use the concepts related to gravitational acceleration and centripetal acceleration. The equality between these two forces that maintains the balance will allow to determine how the rigid body is consistent with a spherically symmetric mass distribution of constant density. Let's start with the gravitational acceleration of the Star, which is

a_g = \frac{GM}{R^2}

Here

M = \text{Mass inside the Orbit of the star}

R = \text{Orbital radius}

G = \text{Universal Gravitational Constant}

Mass inside the orbit in terms of Volume and Density is

M =V \rho

Where,

V = Volume

\rho =Density

Now considering the volume of the star as a Sphere we have

V = \frac{4}{3} \pi R^3

Replacing at the previous equation we have,

M = (\frac{4}{3}\pi R^3)\rho

Now replacing the mass at the gravitational acceleration formula we have that

a_g = \frac{G}{R^2}(\frac{4}{3}\pi R^3)\rho

a_g = \frac{4}{3} G\pi R\rho

For a rotating star, the centripetal acceleration is caused by this gravitational acceleration.  So centripetal acceleration of the star is

a_c = \frac{4}{3} G\pi R\rho

At the same time the general expression for the centripetal acceleration is

a_c = \frac{\Theta^2}{R}

Where \Theta is the orbital velocity

Using this expression in the left hand side of the equation we have that

\frac{\Theta^2}{R} = \frac{4}{3}G\pi \rho R^2

\Theta = (\frac{4}{3}G\pi \rho R^2)^{1/2}

\Theta = (\frac{4}{3}G\pi \rho)^{1/2}R

Considering the constant values we have that

\Theta = \text{Constant} \times R

\Theta \propto R

As the orbital velocity is proportional to the orbital radius, it shows the rigid body rotation of stars near the galactic center.

So the rigid-body rotation near the galactic center is consistent with a spherically symmetric mass distribution of constant density

6 0
3 years ago
Other questions:
  • What would happen if all the waste that the earth produces was put into space would that have a positive or negative effect
    9·1 answer
  • What are stars? Are their lights natural what is the biggest galaxy are there any other planets other then ours have scientists
    6·2 answers
  • Which has less inertia, a bicycle or a train? A. bicycle B. train C. all matter has equal inertia D. neither has any inertia on
    12·1 answer
  • If you have charged an electroscope by contact with a positively charged object, describe how you could use it to determine the
    13·1 answer
  • How can i calculate tangential acceleration
    7·1 answer
  • In the equation for the gravitational force between two objects, which quantity must be squared?
    10·1 answer
  • State one activity in our daily life by using the characteristic of iron rod.​
    13·1 answer
  • PLEASE HELP WITH THIS QUESTION<br><br>What of Newton's 3 laws is this picture​
    7·1 answer
  • Entropy is the amount of heat a system releases. true or false?​
    12·2 answers
  • An engineer wishes to design a roller coaster so that
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!