Answer:
35 mph
Explanation:
The key of this problem lies in understanding the way that projectile motion works as we are told to neglect the height of the javelin thrower and wind resistance.
When the javelin is thown, its velocity will have two components: a x component and a y component. The only acceleration that will interact with the javelin after it was thown will be the gravety, which has a -y direction. This means that the x component of the velocity will remain constant, and only the y component will be affected, and can be described with the constant acceleration motion properties.
When an object that moves in constant acceleration motion, the time neccesary for it to desaccelerate from a velocity v to 0, will be the same to accelerate the object from 0 to v. And the distance that the object will travel in both desaceleration and acceleration will be exactly the same.
So, when the javelin its thrown, it willgo up until its velocity in the y component reaches 0. Then it will go down, and it will reach reach the ground in the same amount of time it took to go up and, therefore, with the same velocity.
Answer:
43.96 L
Explanation:
We are given that





We know that


Substitute the values


Hence, the volume of balloon at -14.8 degree Celsius=43.96 L
Answer:
0.72 Hz minimum frequency
Explanation:
When the damping is negligible,Amplitude is given as

here
= (6.30)/(0.135) = 46.67 N/m kg
= 1.70/(0.135)(0.480) = 26.2 N/m kg
From the above equation , rearranging for ω,

⇒ ω² =46.67 ± 26.2 = 72.87 or 20.47
⇒ ω = 8.53 or 4.52 rad/s
Frequency = f
ω=2 π f
⇒ f = ω / 2π = 8.53 /6.28 or 4.52 / 6.28 = 1.36 Hz or 0.72 Hz
The lower frequency is 0.72 Hz and higher is 1.36 Hz
Answer:
- The limitation of the maximum number of electrons in a given energy level can be used to account for the periodic recurrence of properties as the number of electrons increases.
Explanation:
First - Scientists have not yet determined exactly why electrons do not collapse into the nucleus. FALSE: Scientists do know why electrons do not collapse. Since the beginins of quantum mechanics it's known that the energy at small scales is quantized, that means there only can be certain values meaning that the energy do not change continously. In the case of the electron, it can only have certain levels of energy, that means they do not radiate continously as the go arround the atom, instead it is only allowed to have a certain amount of energy in a given state therefore it can not lose energy continously collapsing into the nucleus.
Second - Electrons cannot be located between levels except when they are in the process of moving. FALSE: We can not say that a electron moves between energy levels, it only can exist in any of the levels, but never in between. Also, the electron in any of its possible energy lavels can not be located with complete certainty due to the uncertainty principle.
Fourth - Electrons have any random energy. FALSE: as exposed above the electrons can only have certain cuantized energy levels acordinly to the rules of quantum physics
Fifth - Electrons can be found between energy levels. FALSE: Like said before we can not say that a electron exists between energy levels, it only can exist in any of the allowed levels, but never in between.
Thirth (correct one) : - The limitation of the maximum number of electrons in a given energy level can be used to account for the periodic recurrence of properties as the number of electrons increases. TRUE: the maximum number of electrons allowed in a given energy level directly determines the tipe of bond an atom can made with another (this due to the number of electrons in the higest energy level), so for example the elements in the left of a given row of the periodic table tend to have ionic bonds, but in the other hand the elements on right side tend form more covalent bonds. And this characteristic directly correllate with diferent properties of the elements.
I'm pretty sure the answer would be D