Answer:
A) As < N < F
Explanation:
Ionization energy refers to the minimum amount of energy required to remove an electron from a gaseous atom r in.
The genera trend of IE, is that it increases across the period from left to right and decrease down the group in a periodic table.
As belongs to period 4, this means it as the lowest ionization energy.
Nitrogen and Florine belong to the same period however Florine has a higher ionization energy.
In order of increasing IE;
As < N < F
<u>Answer:</u>
The correct answer option is 1.6 atm.
<u>Explanation:</u>
We know that there is a sample gas which has a volume of 2.4 L with a pressure 1.2 atm and we are to find the pressure of the same gas sample if its volume is reduced to 1.8 L at a constant temperature.
We will apply the Boyle's law here which states that the "pressure of a given mass of an ideal gas is inversely proportional to its volume at a constant temperature".
<em>
</em>
Substituting the values in the formula to get:

Therefore, the pressure of the same gas sample will be 1.6 atm if the volume is reduced to 1.8 L at a constant temperature.
Answer:

Explanation:
Hello there!
In this case, we can identify the solution to this problem via the Dalton's rule because the partial pressure of helium is given by:

Whereas the mole fraction of helium is calculated by firstly obtaining the moles and then the mole fraction:

Then, we calculate the partial pressure as shown below:

Best regards!
Add up the molar mass of Mercury Oxide, and then divide the molar mass of Oxygen by the molar mass of the compound.
So...
mm of Hg + mm of O= 200.59g + 16g= 217g
16g/217g = .0737... x 100 = 7.37%