Answer:
This question is asking to identify the following variables:
Independent variable (IV): Battery
Dependent variable (DV): Time the clock stopped
Constant: Same clock
Control: No stated control
Explanation:
The independent variable in an experiment is the variable that is subject to manipulation or change by the experimenter. In this experiment, the independent variable is the BATTERIES (Duracell, Energizer, Kroger brand, EverReady).
The dependent variable is the variable that responds to the changes made to the independent variable. It is the variable that the experimenter measures. In this case, the dependent variable is the TIME IT TAKES FOR THE CLOCK TO STOP.
Constants or control variable is the variable that the experimenter keeps constant or unchanged for all groups throughout the experiment in order not to influence the outcome of the experiment. The constant in this case is the SAME CLOCK USED.
Control group is the group that does not receive the experimental treatment or independent variable in an experiment. In this case, all groups received a different kind of battery.
The plant that is closest to the sun is murcury. Then it is venus, then earth, and then mars. Then it is jupiter, then saturn, then uranus, then neptune.
The average speed of an object is defined as the distance traveled divided by the time elapsed. Velocity is a vector quantity, and average velocity can be defined as the displacement divided by the time. According To a website on google
Answer:
Option B, Some of the cars' kinetic energy was converted to sound and heat energy.
Explanation:
In an elastic collision, no energy is lost during and after collision. Thus, it can be said that in an elastic collision both momentum and kinetic energy remains conserved.
While in non-elastic collision, kinetic energy of the system is lost. However, the momentum of the system is conserved. Generally, during and after collision some of the kinetic energy is lost as thermal energy, sound energy etc.
Hence, option B is correct
Answer:
<em>the phase relationship between two waves.</em>
<em></em>
Explanation:
Coherence describes all properties of the correlation between physical quantities between waves. It is an ideal property of waves that determines their interference. In a situation in which there is a correlation or phase relationship between two waves. If the properties of one of the waves can be measure directly, then, some of the properties of the other wave can be calculated.