V^2=u^2+2as
V=0
a =-u^2/2s
a=[4]^2/2[4]
a=-2m/s^2
Answer:
(1) A sound wave a mechanical wave because mechanical waves rely on particle interaction to transport their energy, they cannot travel through regions of space that are void of particles. Sound is a mechanical wave and cannot travel through a vacuum. These particle-to-particle, mechanical vibrations of sound conductance qualify sound waves as mechanical waves. Sound energy, or energy associated with the vibrations created by a vibrating source, requires a medium to travel, which makes sound energy a mechanical wave. The answer is(B) it travels in the medium.
(2) An ocean wave is an example of a mechanical transverse wave
The compression is the part of the compressional wave where the particles are crowded together. The rarefaction is the part of the compressional wave where the particles are spread apart. The answer is (C) Compression.
K.E. = 1/2 mv²
K.E. is directly proportional to v^2
So, when K.E. increase by 2, K.E. increase by root. 2
v' = 1.41v
original v value was 3 so, final would be:
v' = 1.41*3 = 4.23
After round-off to it's tenth value, it will be:
v' = 4.2
So, option B is your answer!
Hope this helps!
Answer:
La expansión no es más que el incremento con el tiempo de la distancia entre cualquier par de galaxias lejanas. Se suele utilizar para representar este hecho la analogía de un globo donde hemos pintado una serie de puntos a modo de galaxias.
Explanation: