Answer:
Correct option: B. 90%
Explanation:
The confidence interval is given by:
![CI = [\bar{x} - z\sigma_{\bar{x}} , \bar{x}+z\sigma_{\bar{x}} ]](https://tex.z-dn.net/?f=CI%20%3D%20%5B%5Cbar%7Bx%7D%20-%20z%5Csigma_%7B%5Cbar%7Bx%7D%7D%20%2C%20%5Cbar%7Bx%7D%2Bz%5Csigma_%7B%5Cbar%7Bx%7D%7D%20%5D)
If
is 190, we can find the value of
:



Now we need to find the value of
:


So the value of z is 1.71.
Looking at the z-table, the z value that gives a z-score of 1.71 is 0.0436
This value will occur in both sides of the normal curve, so the confidence level is:

The nearest CI in the options is 90%, so the correct option is B.
Answer:
Modulus of resilience will be 
Explanation:
We have given yield strength 
Elastic modulus E = 104 GPa
We have to find the modulus
Modulus of resilience is given by
Modulus of resilience
, here
is yield strength and E is elastic modulus
Modulus of resilience
Answer:
1) 4.361 x 10 raised to power 8 revolutions
2) 1.744 x 10 raised to power 9 firings
3) 2.18 x 10 raised to power 8 intake strokes
Explanation:
The step by step explanation is as shown in the attachment
78950W the answer
Explanation:
A 75- kw, 3-, Y- connected, 50-Hz 440- V cylindrical synchronous motor operates at rated condition with 0.8 p.f leading. the motor efficiency excluding field and stator losses, is 95%and X=2.5ohms. calculate the mechanical power developed, the Armature current, back e.m.f, power angle and maximum or pull out torque of the motor
A 75- kw, 3-, Y- connected, 50-Hz 440- V cylindrical synchronous motor operates at rated condition with 0.8 p.f leading. the motor efficiency excluding field and stator losses, is 95%and X=2.5ohms. calculate the mechanical power developed, the Armature current, back e.m.f, power angle and maximum or pull out torque of the motor