1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nimfa-mama [501]
4 years ago
6

Ethan is an engineer who is trying to create a totally quiet fluid power system. Which part of the fluid power system will he ne

ed to redesign?
valve

motor

regulator

compressor
Engineering
2 answers:
Elis [28]4 years ago
5 0

Answer:

D.

Explanation:

creativ13 [48]4 years ago
3 0

Answer:

C: compressor

Explanation:

As it states in the text, Unfortunately, the pump or compressor in a fluid power system is often noisy and heavy. This aspect of the fluid power system is a critical area of interest for engineers and scientists who seek to improve fluid power.

You might be interested in
I'll give a free brainliest
spayn [35]
All I need is one more.
Thx!!
<333333
5 0
3 years ago
Read 2 more answers
A body is moving with simple harmonic motion. It's velocity is recorded as being 3.5m/s when it is at 150mm from the mid-positio
natima [27]

Answer:

1) A=282.6 mm

2)a_{max}=60.35\ m/s^2

3)T=0.42 sec

4)f= 2.24 Hz

Explanation:

Given that

V=3.5 m/s at x=150 mm     ------------1

V=2.5 m/s at x=225 mm   ------------2

Where x measured  from mid position.

We know that velocity in simple harmonic given as

V=\omega \sqrt{A^2-x^2}

Where A is the amplitude and ω is the natural frequency of simple harmonic motion.

From equation 1 and 2

3.5=\omega \sqrt{A^2-0.15^2}    ------3

2.5=\omega \sqrt{A^2-0.225^2}   --------4

Now by dividing equation 3 by 4

\dfrac{3.5}{2.5}=\dfrac {\sqrt{A^2-0.15^2}}{\sqrt{A^2-0.225^2}}

1.96=\dfrac {{A^2-0.15^2}}{{A^2-0.225^2}}

So    A=0.2826 m

A=282.6 mm

Now by putting the values of A in the equation 3

3.5=\omega \sqrt{A^2-0.15^2}

3.5=\omega \sqrt{0.2826^2-0.15^2}

ω=14.609 rad/s

Frequency

ω= 2πf

14.609= 2 x π x f

f= 2.24 Hz

Maximum acceleration

a_{max}=\omega ^2A

a_{max}=14.61 ^2\times 0.2826\ m/s^2

a_{max}=60.35\ m/s^2

Time period T

T=\dfrac{2\pi}{\omega}

T=\dfrac{2\pi}{14.609}

T=0.42 sec

8 0
4 years ago
a) A total charge Q = 23.6 μC is deposited uniformly on the surface of a hollow sphere with radius R = 26.1 cm. Use ε0 = 8.85419
dusya [7]

Answer:

(a) E = 0 N/C

(b) E = 0 N/C

(c) E = 7.78 x10^5 N/C

Explanation:

We are given a hollow sphere with following parameters:

Q = total charge on its surface = 23.6 μC = 23.6 x 10^-6 C

R = radius of sphere = 26.1 cm = 0.261 m

Permittivity of free space = ε0 = 8.85419 X 10−12 C²/Nm²

The formula for the electric field intensity is:

E = (1/4πεo)(Q/r²)

where, r = the distance from center of sphere where the intensity is to be found.

(a)

At the center of the sphere r = 0. Also, there is no charge inside the sphere to produce an electric field. Thus the electric field at center is zero.

<u>E = 0 N/C</u>

(b)

Since, the distance R/2 from center lies inside the sphere. Therefore, the intensity at that point will be zero, due to absence of charge inside the sphere (q = 0 C).

<u>E = 0 N/C</u>

(c)

Since, the distance of 52.2 cm is outside the circle. So, now we use the formula to calculate the Electric Field:

E = (1/4πεo)[(23.6 x 10^-6 C)/(0.522m)²]

<u>E = 7.78 x10^5 N/C</u>

4 0
3 years ago
A solid shaft and a hollow shaft of the same material have same length and outer radius R. The inner radius of the hollow shaft
alexandr402 [8]

Answer with Explanation:

By the equation or Torque we have

\frac{T}{I_{p}}=\frac{\tau }{r}=\frac{G\theta }{L}

where

T is the torque applied on the shaft

I_{p} is the polar moment of inertia of the shaft

\tau is the shear stress developed at a distance 'r' from the center of the shaft

\theta is the angle of twist of the shaft

'G' is the modulus of rigidity of the shaft

We know that for solid shaft I_{p}=\frac{\pi R^4}{2}

For a hollow shaft I_{p}=\frac{\pi (R_o^4-R_i^4)}{2}

Since the two shafts are subjected to same torque from the relation of Torque we have

1) For solid shaft

\frac{2T}{\pi R^4}\times r=\tau _{solid}

2) For hollow shaft we have

\tau _{hollow}=\frac{2T}{\pi (R^4-0.7R^4)}\times r=\frac{2T}{\pi 0.76R^4}

Comparing the above 2 relations we see

\frac{\tau _{solid}}{\tau _{hollow}}=0.76

Similarly for angle of twist we can see

\frac{\theta _{solid}}{\theta _{hollow}}=\frac{\frac{LT}{I_{solid}}}{\frac{LT}{I_{hollow}}}=\frac{I_{hollow}}{I_{solid}}=1.316

Part b)

Strength of solid shaft = \tau _{max}=\frac{T\times R}{I_{solid}}

Weight of solid shaft =\rho \times \pi R^2\times L

Strength per unit weight of solid shaft = \frac{\tau _{max}}{W}=\frac{T\times R}{I_{solid}}\times \frac{1}{\rho \times \pi R^2\times L}=\frac{2T}{\rho \pi ^2R^5L}

Strength of hollow shaft = \tau '_{max}=\frac{T\times R}{I_{hollow}}

Weight of hollow shaft =\rho \times \pi (R^2-0.7R^2)\times L

Strength per unit weight of hollow shaft = \frac{\tau _{max}}{W}=\frac{T\times R}{I_{hollow}}\times \frac{1}{\rho \times \pi (R^2-0.7^2)\times L}=\frac{5.16T}{\rho \pi ^2R^5L}

Thus \frac{Strength/Weight _{hollow}}{Strength/Weight _{Solid}}=5.16

3 0
4 years ago
A tension member must be designed for a service dead load of 18 kips and a service live load of 2 kips.
ella [17]

Answer:

A) max factored load ( pv = 1.4 * 18 ) = 25.2 kips

B) max load factored load  = ( Pa = 18 + 2 ) = 20 kips

Explanation:

service dead load = 18 kips

service live load = 2 kips

A) Determine the maximum factored load and controlling AISC load combination

max factored load ( pv = 1.4 * 18 ) = 25.2 kips

DL = 18 kips

LL = 2 kips

B) Determine the max load and controlling AISC load combination

max load factored load  = ( Pa = 18 + 2 ) = 20 kips

attached below

4 0
3 years ago
Other questions:
  • Question 2 (Multiple Choice Worth 3 points)
    11·1 answer
  • Fred wants to help his customer understand his vision for constructing the office interior. Which visual representation will bes
    8·1 answer
  • Ayden read 84 pages in 2 hours. At that rate, how many pages can he read in 5 hours
    11·2 answers
  • A computer can function without peripheral devices.<br><br> true <br><br> false
    11·2 answers
  • A ten story hospital has to constructed with the footprint of 45,000 ft^2. Subsurface soil consist of soft clay layer of 10 ft.
    15·1 answer
  • Which two states about electric motor are true
    8·1 answer
  • One of the flaws in the engineers' reasoning for galloping gertie's design was that they attributed prior failures of suspension
    12·1 answer
  • Three capillary tubes with different radius (r1=1.0mm, r2=0.1mm, r3=0.01mm) are inserted into the same cup of water. The surface
    14·1 answer
  • How has dissection used in engineering?
    9·2 answers
  • Scientists believe that our solar system formed about 4.6 billion years ago from a cloud of hydrogen, helium, rock, ice, dust, a
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!