Answer : The concentration of a solution with an absorbance of 0.460 is, 0.177 M
Explanation :
Using Beer-Lambert's law :
where,
A = absorbance of solution
C = concentration of solution
l = path length
= molar absorptivity coefficient
From this we conclude that absorbance of solution is directly proportional to the concentration of solution at constant path length.
Thus, the relation between absorbance and concentration of solution will be:
Given:
= 0.350
= 0.460
= 0.135 M
= ?
Now put all the given values in the above formula, we get:
Therefore, the concentration of a solution with an absorbance of 0.460 is, 0.177 M
GaBr3
Gallium=Ga
Bromine= Br
Bromide=Br3
Enthalpy of formation is calculated by subtracting the total enthalpy of formation of the reactants from those of the products. This is called the HESS' LAW.
ΔHrxn = ΔH(products) - ΔH(reactants)
Since the enthalpies are not listed in this item, from reliable sources, the obtained enthalpies of formation are written below.
ΔH(C2H5OH) = -276 kJ/mol
ΔH(O2) = 0 (because O2 is a pure substance)
ΔH(CO2) = -393.5 kJ/mol
ΔH(H2O) = -285.5 kJ/mol
Using the equation above,
ΔHrxn = (2)(-393.5 kJ/mol) + (3)(-285.5 kJ/mol) - (-276 kJ/mol)
ΔHrxn = -1367.5 kJ/mol
<em>Answer: -1367.5 kJ/mol</em>
When organisms and plants died and sank to the bottom of swamps and oceans, brown soil-like materials called peat are formed. Over millions of years, the peat became covered with sand, clay and other minerals and the peat is converted into layers of sedimentary rocks. After a long time, different type of fossil fuels are formed.