Where is the rest .........
We will assume that the CM of the arm is at "L"
from the elbow, and the ball is at 34cm. Then the net torque is computed
by:
Net τ = 1.42 N * 34 cm + 1.50 kg * 9.8m/s² * 34 cm/2 – 12.6 N*2.75cm
= 48.28 N*cm + 1.50kg * 9.8m/s² * 34 cm/2 – 12.6 N*2.75cm
= 48.28 N*cm + 499.8 – 34.65 N*cm
τ = 513.43 N*cm or
5.1343 N*m
First find the time it takes to hit the sand t
using s=1/2 g t^2
t^2= 8/9.8= 0.82 seconds
This means the sand was s = 8 * 0.82 = 6.5m away
The horizontal speed stays constant at 8 m/s
The vertical speed =.82 * 9.8 = 8.0 m/s
As the two velocities are equal the angle must be 45 degrees to the horizontal
Answer:
I think the answer is B
There is no specific reason
They would be able to jump higher with less effort the ball would weigh less meaning it could be dribbled with little to no effort there would also be the fact that your running would be effected.your legs would come off the ground if only for an inch or two allowing you to travel faster but with less control