Answer:
Stress = F / A force per unit area
A = 3.00 cm^2 = 3 E-4 m^2
F = 2.4E8 N/m^2 * 3E-4 m^2 = 7.2E4 N max force applied
F/3 = 2.4E4 N if force not to exceed limit (= f)
f = M a
a = 2.4 E4 N / 1.2 E3 kg = 20 m / s^2 about 2 g
Answer:
= 925.92 N
≅ 926N
Explanation:
Pressure due to car = pressure due to applied force
12000/18^2 = Force / 5^2
force = 12000 * 25/ 324
= 925.92 N
For equilibrium
Pressure1 = Pressure2
A1F1 = A2F2
12000*pi*(5^2) = F2 ( pi)*(18^2)
so, F2 = Applied force to lift car = 925.92 N
Pascal's principle
Pressure1 = Pressure2
F1/A1 = F2/A2 (F=force and A=area)
A1 =Pi*(0.05)²
A2 =Pi(0.18)²
F2=12000
F1 = 12000*(0.05)² / (0.18)² = 926N
Answer: Diagram B
Explanation:
A free body diagram shows the forces acting on an object in a certain scenario.
In this scenario there are two forces acting on the carrot: the Tension force (Ft) from the rope that the carrot is hanging from and Gravitational force(Fg) which is pulling the carrot to the Earth.
The diagram depicting this is diagram B.
Let say the point is inside the cylinder
then as per Gauss' law we have
here q = charge inside the gaussian surface.
Now if our point is inside the cylinder then we can say that gaussian surface has charge less than total charge.
we will calculate the charge first which is given as
now using the equation of Gauss law we will have
now we will have
Now if we have a situation that the point lies outside the cylinder
we will calculate the charge first which is given as it is now the total charge of the cylinder
now using the equation of Gauss law we will have
now we will have