Answer:
3.10 mole of C3H8O change in entropy is 89.54 J/K
Explanation:
Given data
mole = 3.10 moles
temperature = -89.5∘C = -89 + 273 = 183.5 K
ΔH∘fus = 5.37 kJ/mol = 5.3 ×10^3 J/mol
to find out
change in entropy
solution
we know change in entropy is ΔH∘fus / melting point
put these value so we get change in entropy that is
change in entropy 5.3 ×10^3 / 183.5
change in entropy is 28.88 J/mol-K
so we say 1 mole of C3H8O change in entropy is 28.88 J/mol-K
and for the 3.10 mole of C3H8O change in entropy is 3.10 ×28.88 J/K
3.10 mole of C3H8O change in entropy is 89.54 J/K
The car’s velocity at the end of this distance is <em>18.17 m/s.</em>
Given the following data:
- Initial velocity, U = 22 m/s
- Deceleration, d = 1.4
To find the car’s velocity at the end of this distance, we would use the third equation of motion;
Mathematically, the third equation of motion is calculated by using the formula;
Substituting the values into the formula, we have;
<em>Final velocity, V = 18.17 m/s</em>
Therefore, the car’s velocity at the end of this distance is <em>18.17 m/s.</em>
<em></em>
Read more: brainly.com/question/8898885
Answer:
A
Explanation:
The equation of power is defined as Power = Workdone/Time Taken
And workdone = Force x Distance so using these equations we get they workdone is, 200x 10 = 2000Nm.
Dividing workdone with time will yield power, 2000 ÷ 8 = 250 Nm/s = 250W.
Answer:
The speed of light is that medium is 281907786.2 m/s.
Explanation:
since the critical angle is Фc = 430, we know that the refractive index is given by:
n = 1/sin(Фc)
= 1/sin(430)
= 1.06
then if n is the refractive index of the medium and c is the speed of light, then the speed of light in the medium is given by:
v = c/n
= (3×10^8)/(1.06)
= 281907786.2 m/s
Therefore, the speed of light is that medium is 281907786.2 m/s.
Answer:
A) and B) are correct.
Explanation:
Let's take a look at the attached picture. Now
The total voltage across both capacitors is the same as the sum of the voltage from each device, that statement is true for any electrical device connected in series. So a) is TRUE
The equivalent capacitance is going to be:
And that value can be mathematically proven that is always less than any of the values of each capacitor. So b is TRUE
And through both capacitors flow the same current, but the amount of charge depends on the value of the capacitors, so only could be the same if the capacitors are the same value. Otherwise, don't. C) not always, so FALSE