Answer: magnitude of the magnetic field at a distance of 19.4 cm from the wire=4.29mT
Explanation:
According to Biot-Savart law, A magnetic field generated by a current carrying wire at a distance is represented as
B=μ₀I/ 2πr
B = magnetic field intensity 1000 mT =1T, 6.50mT = 6.50 X 10^-3T
μ₀ =permeability of free space 4π × 10−7 H/m
I = current intensity
r = radius, 100cm = 1m, 12.8 cm= 12.8 x 10^-2m
6.50 X 10^-3 = μ₀ x I/ 2 π X 12.8 X 10^-2
I =6.50 X 10 ^-3 X 2π X X 12.8 X 10^-2/ 4π × 10−7 H/m
I= 4160 A
when the magnetic field is at 19.4 cm from the wire
B=μ₀I/ 2πr
= 4π × 10−7 H/m x4160/ 2π x 19.4 x 10^-2
=0.004288
= 4.29x 10 ^-3T
= 4.29mT
The resistance of the lamp plugged in to a standard wall outlet with a current of 0.5 amps is 240 Ω (ohms)
Explanation:
In the United States Of America the standard voltage is 120 v and their frequency is 60 Hz
Standard wall outlet voltage is 120 V
The current in the lamp is 0.5 ampere
Resistance (R) = V/ I
= 120/0.5
= 240Ω (ohms)
Thus the resistance of the lamp plugged in to a standard wall outlet with a current of 0.5 amps is 240 Ω (ohms).
Velocity of submarine A is vs = 11.0m/s
frequency emitted by submarine A. F = 55.273 × 10∧3HZ
Velocity of submarine B = vO = 3.00m/s
The given equation is
f' = ((V + vO) ((v - vS)) × f
The observer on submarine detects the frequency f'.
The sign of vO should be positive as the observer of submarine B is moving away from the source of submarine A.
The speed of the sound used in seawater is 1533m/s
The frequency which is detected by submarine B is
fo = fs (V -vO/ v +vs)
= 53.273 × 10∧3hz) ((1533 m/s - 4.5 m/s)/ (1533 m/s +11 m/s)
fo = 5408 HZ