Answer:
a star in andromeda
Explanation:
all of the other objects are in the milkyway (where we are) and the andromeda galaxy is 2 million light years away from us
Answer:
How to find the maximum height of a projectile?
if α = 90°, then the formula simplifies to: hmax = h + V₀² / (2 * g) and the time of flight is the longest. ...
if α = 45°, then the equation may be written as: ...
if α = 0°, then vertical velocity is equal to 0 (Vy = 0), and that's the case of horizontal projectile motion.
Explanation:
Answer:
Shiny metals such as copper, silver, and gold are often used for decorative arts, jewelry, and coins.
Strong metals such as iron and metal alloys such as stainless steel are used to build structures, ships, and vehicles including cars, trains, and trucks.
Some metals have specific qualities that dictate their use. For example, copper is a good choice for wiring because it is particularly good at conducting electricity. Tungsten is used for the filaments of light bulbs because it glows white-hot without melting.
Nonmetals are plentiful and useful. These are among the most commonly used:
Oxygen, a gas, is absolutely essential to human life. Not only do we breathe it and use it for medical purposes, but we also use it as an important element in combustion.
Sulfur is valued for its medical properties and as an important ingredient in many chemical solutions. Sulfuric acid is an important tool for industry, used in batteries and manufacturing.
Chlorine is a powerful disinfectant. It is used to purify water for drinking and fill swimming pools.
Explanation:
Answer:
The measured redshift is z =2
Explanation:
Since the object is traveling near light speed, since v/c = 0.8, then we have to use a redshift formula for relativistic speeds.

Finding the redshift.
We can prepare the formula by dividing by lightspeed inside the square root to both numerator and denominator to get

Replacing the given information


Thus the measured redshift is z = 2.
Explanation:
Acceleration is the change in speed over change in time.
a = Δv / Δt
a. The car's acceleration is:
a = (80 km/h − 0 km/h) / 10 s
a = 8 km/h/s
So every second, the speed increases by 8 km/h.
b. The cyclist's acceleration is:
a = (16 m/s − 4.0 m/s) / 5.6 s
a = 2.1 m/s²
c. The stone's speed is:
10.0 m/s² = (v − 0 m/s) / 3.5 s
v = 35 m/s
d. The time is:
1.6 m/s² = (10 m/s − 0 m/s) / t
t = 6.3 s