Answer:
Assuming that you meant the final velocity of 50 m/s was reached in 10 s, the answer would be 5 m/s^2.
Explanation:

So we update that with the values that we have.

then simplify that using algebra to solve for a and we get 5 m/s^2
Answer:
(C) Only if it starts moving
Explanation:
We know that work done is given by

So there are two case in which work done is zero
First case is that when force and displacement are perpendicular to each other
And other case is that when there is no displacement
So for work to be done there must have displacement, if there is no displacement then there is no work done
So option (c) will be the correct option
Answer:

Explanation:
The motion of the bullet is a uniformly accelerated motion, therefore we can find its acceleration by using the following suvat equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
s is the distance covered
For the bullet in this problem:
u = 350 m/s is the initial velocity of the bullet
v = 0 is the final velocity (the bullet comes to a stop)
s = 0.125 m is the stopping distance of the bullet
Therefore, by solving the equation for a, we find its acceleration:

And the negative sign tells that the direction of the acceleration is opposite to that of the velocity.
Answer:
r=0.127
Explanation:
When connected in series
Current = I
When connected in parallel
Current = 10 I
We know that equivalent resistance
In series R = R₁+R₂
in parallel R= R₁R₂/(R₂+ R₁)
Given that voltage is constant (Vo)
V = I R
Vo = I (R₁+R₂) ------------1
Vo = 10 I (R₁R₂/(R₂+ R₁)) -------2
From above equations
10 I (R₁R₂/(R₂+ R₁)) = I (R₁+R₂)
10 R₁R₂ = (R₁+R₂) (R₂+ R₁)
10 R₁R₂ = 2 R₁R₂ + R₁² + R₂²
8 R₁R₂ = R₁² + R₂²
Given that
r = R₁/R₂
Divides by R₂²
8R₁/R₂ = ( R₁/R₂)²+ 1
8 r = r ² + 1
r ² - 8 r+ 1 =0
r= 0.127 and r= 7.87
But given that R₂>R₁ It means that r<1 only.
So the answer is r=0.127
Answer:
acceleration 8 km/h/s south
Explanation:
First of all, let's remind that a vector quantity is a quantity which has both a magnitude and a direction.
Based on this definition, we can already rule out the following two choices:
distance: 40 km
speed: 40 km/h
Since they only have magnitude, they are not vectors.
Then, the following option:
velocity: 5 km/h north
is wrong, because the car is moving south, not north.
So, the correct choice is
acceleration 8 km/h/s south
In fact, the acceleration can be calculated as

where
v = 40 km/h is the final velocity
u = 0 is the initial velocity
t = 5 s is the time
Substituting,

And since the sign is positive, the direction is the same as the velocity (south).