Answer:
An example of engineering material, <em><u>are plastics,</u></em> they are derived from organic, natural materials, such as cellulose, coal, natural gas, salt and, of course, oil. Oil is a complex mixture of thousands of compounds and must be processed before being used.
Explanation:
Plastic production begins with distillation at a refinery, where crude oil is separated into groups of lighter components, called fractions. Each fraction is a mixture of hydrocarbon chains (chemical compounds formed by carbon and hydrogen) that differ in terms of the size and structure of their molecules. One of those fractions, naphtha, is the essential compound for the production of plastic.
Two main processes are used to make plastic: polymerization and polycondensation, and both require specific catalysts. In a polymerization reactor, monomers like ethylene and propylene join to form long polymer chains. Each polymer has its own properties, structure and dimensions depending on the type of basic monomer that has been used.
Answer:
Sorry but erm was their supposed to be a image attach with it
Explanation:
Answer:
Answer: The solubility of B is high than the solubility of A.
Explanation:
The solubility is defined as the amount of substance dissolved in a given amount of solvent. More the solute gets dissolved, high will be the solubility and less the solute dissolved, low will be the solubility.
Mass of undissolved substance of substance A is more than Substance B at every temperature. This implies that less amount of solute gets dissolved in the given amount of solvent.
Therefore, B has high solubility than substance A.
Answer:
Alkali metals are soft and have low melting points.
Answer:
Carbon (C)
Explanation:
Carbon is the only nonmetal there and covalent bonds happen between two nonmetal atoms