The choices for this problem are bismuth, Bi; platinum, Pt; selenium, Se; calcium, Ca and copper, Cu. I think the correct answer would be selenium. The melting point of bismuth is at a temperature of 544.4 Kelvin. At a temperature of 525 K, it would exist as solid. Platinum melts at 2041.1 K. At 525 K, platinum would be in solid form. Selenium has a melting point at 494 K so that at a temperature of 525 K, it would exist in its liquid state. Calcium has a melting point of 1112 K so it would exist as solid at 525 K. Copper has a melting point at 1358 K, so it would still exist as solid at a temperature of 525 K. Therefore, the answer would only be selenium.
Cryo-EM is used to preserve and characterize cycled positive electrodes. Under regular cycling conditions, there isn't an intimate coating layer like CEI.A small electrical short can cause a stable conformal CEI to form in place. The conformal CEI's chemistry is revealed by EELS and cryo-(S)TEM.
It has been assumed that the intimate coating layer generated on the positive electrode, known as cathode electrolyte interphase (CEI), is crucial. However, there are still numerous questions about CEI. This results from the absence of useful instruments to evaluate the chemical and structural characteristics of these delicate interphases at the nanoscale. Here, using cryogenic electron microscopy, we establish a methodology to maintain the natural condition and directly see the interface on the positive electrode.
Learn more about Cathode electrolyte interphase here:
brainly.com/question/861659
#SPJ4
Answer:
Formula: Na2S2O3
we get solubility.
Divide the mass of the compound by the mass of the solvent and then multiply by 100 g to calculate the solubility in g/100g .
Solution given:
mass of sodium thiosulphate [m1]=25.5g
mass of water [m2]=40g
at temperature [t]=25°C
we have
<u>solubility in g/dm^3</u> :
- =

- =63.75g /litre=63.75g/dm³
<u>solubility in g/dm^3 :63.75g/dm³</u>
<u>n</u><u>o</u><u>w</u>
solubility of the solute in mol/dm^3=:63.75g/dm³/178=0.4 mol/dm³
Answer:
1.5 × 10² mL
Explanation:
Step 1: Given data
- Initial pressure of the gas (P₁): 1.9 atm
- Initial volume of the gas (V₁): 80 mL
- Final pressure of the gas (P₂): 1.0 atm (standard pressure)
- Final volume of the gas (V₂): ?
Step 2: Calculate the final volume of the gas
For an ideal gas, we can calculate the final volume of the gas using Boyle's law.
P₁ × V₁ = P₂ × V₂
V₂ = P₁ × V₁/P₂
V₂ = 1.9 atm × 80 mL/1.0 atm
V₂ = 1.5 × 10² mL
Since the pressure decreased, the volume of the gas increased.
Answer: Some signs of a chemical change are a change in color and the formation of bubbles. The five conditions of chemical change: color chage, formation of a precipitate, formation of a gas, odor change, temperature change.