Answer:

Explanation:
Hello!
In this case, considering the partial Dalton's law of partial pressures, we can notice that the total pressure equals the pressure of steam and the pressure of hydrogen, which can be determined as shown below:

Thus, by using the ideal gas law, we can compute the moles of hydrogen as shown below:

Best regards!
<h3>
Answer:</h3>
The centripetal acceleration is 26.38 m/s²
<h3>
Explanation:</h3>
We are given;
- Mass of rubber stopper = 13 g
- Length of the string(radius) = 0.93 m
- Time for one revolution = 1.18 seconds
We are required to calculate the centripetal acceleration.
To get the centripetal acceleration is given by the formula;
Centripetal acc = V²/r
Where, V is the velocity and r is the radius.
Since time for 1 revolution is 1.18 seconds,
Then, V = 2πr/t, taking π to be 3.142 ( 1 revolution = 2πr)
Therefore;
Velocity = (2 × 3.142 × 0.93 m) ÷ 1.18 sec
= 4.953 m/s
Thus;
Centripetal acceleration = (4.953 m/s)² ÷ 0.93 m
= 26.38 m/s²
Hence, the centripetal acceleration is 26.38 m/s²
Answer:
dumb stupid restarted illiterate STUPID students ARE JUST GOING TO DIE
The second brother Brother because he is much heavier and therefore has more energy to be released hope this helps