Answer:
Option D. 30 g
Explanation:
The balanced equation for the reaction is given below:
2Na + S —> Na₂S
Next, we shall determine the masses of Na and S that reacted from the balanced equation. This is can be obtained as:
Molar mass of Na = 23 g/mol
Mass of Na from the balanced equation = 2 × 23 = 46 g
Molar mass of S = 32 g/mol
Mass of S from the balanced equation = 1 × 32 = 32 g
SUMMARY:
From the balanced equation above,
46 g of Na reacted with 32 g of S.
Finally, we shall determine the mass sulphur, S needed to react with 43 g of sodium, Na. This can be obtained as follow:
From the balanced equation above,
46 g of Na reacted with 32 g of S.
Therefore, 43 g of Na will react with = (43 × 32)/46 = 30 g of S.
Thus, 30 g of S is needed for the reaction.
Answer:
substance
Explanation:
A pure substance is a form of matter that has a constant composition (meaning it's the same everywhere) and properties that are constant throughout the sample (meaning there is only one set of properties such as melting point, color, boiling point, etc
We can write the balanced equation for the synthesis reaction as
H2(g) + Cl2(g) → 2HCl(g)
We use the molar masses of hydrogen chloride gas HCl and hydrogen gas H2 to calculate for the mass of hydrogen gas H2 needed:
mass of H2 = 146.4 g HCl *(1 mol HCl / 36.46 g HCl) * (1 mol H2 / 2 mol HCl) *
(2.02 g H2 / 1 mol H2)
= 4.056 g H2
We also use the molar masses of hydrogen chloride gas HCl and chlorine gas CL2 to calculate for the mass of hydrogen gas H2:
mass of CL2 = 146.4 g HCl *(1 mol HCl / 36.46 g HCl) * (1 mol Cl2 / 2 mol HCl) *
(70.91 g Cl2 / 1 mol Cl2)
= 142.4 g Cl2
Therefore, we need 4.056 grams of hydrogen gas and 142.4 grams of chlorine gas to produce 146.4 grams of hydrogen chloride gas.