<span>3.92 m/s^2
Assuming that the local gravitational acceleration is 9.8 m/s^2, then the maximum acceleration that the truck can have is the coefficient of static friction multiplied by the local gravitational acceleration, so
0.4 * 9.8 m/s^2 = 3.92 m/s^2
If you want the more complicated answer, the normal force that the crate exerts is it's mass times the local gravitational acceleration, so
20.0 kg * 9.8 m/s^2 = 196 kg*m/s^2 = 196 N
Multiply by the coefficient of static friction, giving
196 N * 0.4 = 78.4 N
So we need to apply 78.4 N of force to start the crate moving. Let's divide by the crate's mass
78.4 N / 20.0 kg
= 78.4 kg*m/s^2 / 20.0 kg
= 3.92 m/s^2
And you get the same result.</span>
Answer:
1201 lbs
Explanation:
Given that in mammals, the weight of the heart is approximately 0.5% of the total body weight.
Let the weight of the heart of a mammal be H
And the weight of the total body be B
The linear model that can gives the heart weight in terms of the total body weight will be:
H = 0.005B
B.) To find the weight of the heart of a whale whose weight is 2.402 × 105 lbs, substitute the whole weight in the formula.
H = 0.005 × 2.402 × 10^5
H = 1201 lbs
Therefore, the weight of the heart of the whale is 1201 lbs
Answer:
194,400 joules of kinetic energy.
Explanation:
Remember that to calculate the Kinetic energy you need to use the next formula:

We know that Mass= 1200 kg and velocity is 18m/s, so we insert those values into the formula:

So the kinetic energy of a car moving at 18m/s with a mass of 1200 kg would be 194,400 joules.