I think it would be 1, 4, 5! Also I love your profile picture!
The four steps of food safety are:
- Clean: Wash your hands and clean surfaces often
- Separate: Don't cross-contaminate the food
- Cook: Cook the food to the right temperature
- Chill: Refrigerate promptly
Hope this helps! If you need more help or have any questions just message me! :)
Answer:
C
Explanation:
it wouldn't be A because that makes no sense
theirs no pill or any type of drug that can slow it down but their is a treatment plan for it
(It could be c or d)
Answer:
0.01917 m^3/kg.
Explanation:
Given:
P = 15 MPa
= 1.5 × 10^4 kPa
T = 350 °C
= 350 + 273
= 623 K
Molar mass of water, m = (2 × 1) + 16
= 18 g/mol
= 0.018 kg/mol
R = 0.4615 kPa·m3/kg·K
Using ideal gas equation,
P × V = n × R × T
But n = mass/molar mass
V = (R × T)/P
V/M = (R × T)/P × m
= (0.4615 × 623)/1.5 × 10^4
= 0.01917 m^3/kg.
<span>atomic weights: Al = 26.98, Cl = 35.45
In this reaction; 2Al = 53.96 and 3Cl2 = 212.7
Ratio of Al:Cl = 53.96/212.7 = 0.2537 that is approximately four times the mass Cl is needed.
Step 2:
(a) Ratio of Al:Cl = 2.70/4.05 = 0.6667
since the ratio is greater than 0.2537 the divisor which is Cl is not big enough to give a smaller ratio equal to 0.2537.
so Cl is limiting
(b)since Cl is the limiting reactant 4.05g will be used to determine the mass of AlCl3 that can be produced.
From Step 1:
212.7g of Cl will produce 266.66g AlCl3
212.7g = 266.66g
4.05g = x
x = 5.08g of AlCl3 can be produced
(c)
Al:Cl = 0.2537
Al:Cl = Al:4.05 = 0.2537
mass of Al used in reaction = 4.05 x 0.2537 = 1.027g
Excess reactant = 2.70 - 1.027 = 1.67g
King Leo · 9 years ago</span>