1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
TiliK225 [7]
3 years ago
9

According to the article "Edward R. Murrow: Inventing Broadcast Journalism," how did Murrow perceive the threat of Adolf Hitler?

Engineering
1 answer:
aliya0001 [1]3 years ago
8 0

Answer:

d. To Murrow, Hitler was a threat to all of civilization

Explanation:

For Murrow, Hitler's rise was a serious problem and a major threat to the entire civilization. For this reason, he believed that covering news about Hitler's advance and the battles of Nazi Germany was essential, even if the American population did not see Hitler as a threat and the European population, believed that these reprotations were only a way to denigrate the image of the continent to the world.

For Murrow reporting on Hitler's actions was as important as reporting on natural disasters.

You might be interested in
(25%) A well-insulated compressor operating at steady state takes in air at 70 oF and 15 psi, with a volumetric flow rate of 500
lubasha [3.4K]

Answer:

You can look it up

Explanation: if you don't know what it is look it up on .

6 0
2 years ago
Explain why the failure of a garden hose occurred near its end and why the tear occurred along its length. Use numerical values
Nataliya [291]

Answer:

Most hydraulic systems develops pressure surges that may surpass settings valve. by exposing the hose surge to pressure above the maximum operating pressure will shorten the hose life.

Explanation:

Solution

Almost all hydraulic systems creates pressure surges that may exceed relief valve settings. exposing the hose surge to pressure above the maximum operating  pressure shortens the hose life.

In systems where pressure peaks are severe, select or pick a hose with higher maximum operating  pressure or choose a spiral reinforced hose specifically designed for severe pulsing applications.

Generally, hoses are designed or created to accommodate pressure surges and have operating pressures that is equal to 25% of the hose minimum pressure burst.

7 0
3 years ago
Initially when 1000.00 mL of water at 10oC are poured into a glass cylinder, the height of the water column is 1000.00 mm. The w
Dafna11 [192]

Answer:

\mathbf{h_2 =1021.9 \  mm}

Explanation:

Given that :

The initial volume of water V_1 = 1000.00 mL = 1000000 mm³

The initial temperature of the water  T_1 = 10° C

The height of the water column h = 1000.00 mm

The final temperature of the water T_2 = 70° C

The coefficient of thermal expansion for the glass is  ∝ = 3.8*10^{-6 } mm/mm  \ per ^oC

The objective is to determine the the depth of the water column

In order to do that we will need to determine the volume of the water.

We obtain the data for physical properties of water at standard sea level atmospheric from pressure tables; So:

At temperature T_1 = 10 ^ 0C  the density of the water is \rho = 999.7 \ kg/m^3

At temperature T_2 = 70^0 C  the density of the water is \rho = 977.8 \ kg/m^3

The mass of the water is  \rho V = \rho _1 V_1 = \rho _2 V_2

Thus; we can say \rho _1 V_1 = \rho _2 V_2;

⇒ 999.7 \ kg/m^3*1000 \ mL = 977.8 \ kg/m^3 *V_2

V_2 = \dfrac{999.7 \ kg/m^3*1000 \ mL}{977.8 \ kg/m^3 }

V_2 = 1022.40 \ mL

v_2 = 1022400 \ mm^3

Thus, the volume of the water after heating to a required temperature of  70^0C is 1022400 mm³

However; taking an integral look at this process; the volume of the water before heating can be deduced by the relation:

V_1 = A_1 *h_1

The area of the water before heating is:

A_1 = \dfrac{V_1}{h_1}

A_1 = \dfrac{1000000}{1000}

A_1 = 1000 \ mm^2

The area of the heated water is :

A_2 = A_1 (1  + \Delta t  \alpha )^2

A_2 = A_1 (1  + (T_2-T_1) \alpha )^2

A_2 = 1000 (1  + (70-10) 3.8*10^{-6} )^2

A_2 = 1000.5 \ mm^2

Finally, the depth of the heated hot water is:

h_2 = \dfrac{V_2}{A_2}

h_2 = \dfrac{1022400}{1000.5}

\mathbf{h_2 =1021.9 \  mm}

Hence the depth of the heated hot  water is \mathbf{h_2 =1021.9 \  mm}

4 0
3 years ago
A spherical gas container made of steel has a(n) 17-ft outer diameter and a wall thickness of 0.375 in. Knowing that the interna
Arte-miy333 [17]

Answer:

Maximum Normal Stress σ = 8.16 Ksi

Maximum Shearing Stress τ = 4.08 Ksi

Explanation:

Outer diameter of spherical container D = 17 ft

Convert feet to inches D = 17 x 12 in = 204 inches

Wall thickness t = 0.375 in

Internal Pressure P = 60 Psi

Maximum Normal Stress σ = PD / 4t

σ = PD / 4t

σ = (60 psi x 204 in) / (4 x 0.375 in)

σ = 12,240 / 1.5

σ = 8,160 P/in

σ = 8.16 Ksi

Maximum Shearing Stress τ = PD / 8t

τ = PD / 8t

τ = (60 psi x 204 in) / (8 x 0.375 in)

τ = 12,240 / 3

τ = 4,080 P/in

τ = 4.08 Ksi

7 0
3 years ago
List in order first three steps to square a board
LenaWriter [7]

Answer:

STEP1 Cut to Rough Length

STEP2 Cut to Rough Width

STEP 3 Face-Jointing

HOPE THAT HELPSSS!!!

5 0
2 years ago
Other questions:
  • With 64 KB of memory and 8 bits in each memory location, how wide should the address bus be to access all 64 KB of memory? (k =
    11·1 answer
  • A bar of 75 mm diameter is reduced to 73mm by a cutting tool while cutting orthogonally. If the mean length of the cut chip is 7
    10·1 answer
  • 4. A 1 m3 rigid tank has propane at 100 kPa, 300 K and connected by a valve to another tank of 0.5 M3 with propane at 250 kPa, 4
    11·1 answer
  • Technician A says that 18 gauge AWG wire can carry more current flow that 12 gauge AWG wire. Technician B says that metric wire
    9·1 answer
  • The air velocity in the duct of a heating system is to be measured by a Pitot-static probe inserted into the duct parallel to th
    13·1 answer
  • 3.24 Program: Drawing a half arrow (Java) This program outputs a downwards facing arrow composed of a rectangle and a right tria
    12·1 answer
  • Which statement describes the relay between minerals and rocks ?
    15·1 answer
  • The complexity of bfs and dfs
    11·1 answer
  • How do all the cars work to move?
    9·2 answers
  • How does energy transition from one form to another as water moves from behind a dam to downstream of a dam?.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!