Answer:
Sarah is asking each department head how long they can be without their primary system. Sarah is trying to determine the Recovery Time Objective (RTO) as this is the duration of time within which the primary system must be restored after the disruption.
Recovery Point Objective is basically to determine the age of restoration or recovery point.
Business recovery and technical recovery requirements are to assess the requirements to recover by Business or technically.
Hence, Recovery Time Objective (RTO) is the correct answer.
Answer:
b. 1232.08 km/hr
c. 1.02 kn
Explanation:
a) For dynamic similar conditions, the non-dimensional terms R/ρ V2 L2 and ρVL/ μ should be same for both prototype and its model. For these non-dimensional terms , R is drag force, V is velocity in m/s, μ is dynamic viscosity, ρ is density and L is length parameter.
See attachment for the remaining.
Answer:
cpct gvxjjxjhdfjokjdzfjiyddzzsjhxf
Answer: Describe the greatest power in design according to Aravena? The subject of Aravena’s recent Futuna Lecture Series in New Zealand was ‘the power of design,’ which he described as ultimately being “the power of synthesis” because, increasingly, architects are dealing with complex issues and problems.
What are the three problems with global urbanization? 1. Degraded Environmental Quality ...
2. Overcrowding ...
3. Housing Problems ...
4. Unemployment ...
5. Development of Slums...
How could you use synthesis in your life to solve problems? Hence, synthesis is often not a one-time process of solution design but is used in combination with problem understanding and solution analysis to progress towards a more complete understanding of problems and solutions over time (see Applying the Systems Approach topic for a more complete discussion of the dynamics of this aspect of the approach).
I got all three answers
Answer:
Heat transfer = 2.617 Kw
Explanation:
Given:
T1 = 300 k
T2 = 440 k
h1 = 300.19 KJ/kg
h2 = 441.61 KJ/kg
Density = 1.225 kg/m²
Find:
Mass flow rate = 1.225 x [1.3/60]
Mass flow rate = 0.02654 kg/s
mh1 + mw = mh2 + Q
0.02654(300.19 + 240) = 0.02654(441.61) + Q
Q = 2.617 Kw
Heat transfer = 2.617 Kw