Answer:
Any engineering job would be good YOU should be the one choosing which job.
Explanation:
Engineering is a great outlet for the imagination, and the perfect field for independent thinkers.
GPS device details are given below.
Explanation:
Even a simple GPS unit has a wide range of settings and features. Because every unit’s operation varies, this article won’t provide step-by-step details. Read the owner's manual to familiarize yourself with it..
If you’d like additional help, you can also sign up for a GPS navigation class at an REI store.
Though steps vary, all GPS receivers do the following basic functions:
Display position: A GPS tells you where you are by displaying your coordinates; it also shows your position on its base map or topo map.
Record tracks: When tracking is turned on, a GPS automatically lays down digital bread crumbs, called “track points,” at regular intervals. You use those later to retrace your steps or to evaluate the path you traveled.
Navigate point-to-point: A GPS directs you by giving you the direction and distance to a location, or “waypoint.” You can pre-mark waypoints by entering their coordinates at home. In the field you can have the unit mark a waypoint at a place you'd like to return to, such as the trailhead or your campsite. A GPS unit provides the bearing and distance “as the crow flies” to a waypoint. Because trails don’t follow a straight line, the bearing changes as you hike. The distance to travel also changes (decreasing, unless you’re heading the wrong direction) as you approach your goal.
Display trip data: This odometer-like function tells you cumulative stats like how far you’ve come and how high you’ve climbed.
GPS and your computer: GPS units come with a powerful software program that lets you manage maps, plan routes, analyze trips and more. Invest the time to learn it and to practice using all of its capabilities.
Answer:
Explanation:
When preparing to move to a curb or side of the road you should always accelerate quickly to move ahead of traffic.
Answer:
total amount of water after 2 min will be 84.4 kg/s
Explanation:
Given data:
one tank inflow = 0.1 kg/s
2nd tank inflow = 0.3 kg/s
3rd tank outflow = 0.03 kg/s
Total net inflow in tank is = 0.3 +0.1 =0.4 kg/s
From third point, outflow is 0.03 kg/s
Therefore, resultant in- flow = 0.4 - 0.03
Resultant inflow is = 0.37 kg/s
Tank has initially 40 kg water
In 2 min ( 2*60 sec), total inflow in tank is 0.37*60*2 = 44.4 kg
So, total amount of water after 2 min will be = 40+44.4 = 84.4 kg
Answer:
the rate of increase of radius is dR/dt = 0.804 m/hour = 80.4 cm/hour
Explanation:
the slick of oil can be modelled as a cylinder of radius R and thickness h, therefore the volume V is
V = πR² * h
thus
h = V / (πR²)
Considering that the volume of the slick remains constant, the rate of change of radius will be
dh/dt = V d[1/(πR²)]/dt
dh/dt = (V/π) (-2)/R³ *dR/dt
therefore
dR/dt = (-dh/dt)* (R³/2) * (π/V)
where dR/dt = rate of increase of the radius , (-dh/dt)= rate of decrease of thickness
when the radius is R=8 m , dR/dt is
dR/dt = (-dh/dt)* (R³/2) * (π/V) = 0.1 cm/hour *(8m)³/2 * π/1m³ *(1m/100 cm)= 0.804 m/hour = 80.4 cm/hour