Answer: Context
Explanation: It is always very important for an engineer to keep the context of his/her expirament in mind.
Answer:
Work done = 125π J
Explanation:
Given:
P = P_i * ( 1 - (x/d)^2 / 25)
d = 5.0 cm
x = 5 * d cm = 25d
Pi = 12 bar
Work done = integral ( F . dx )
F (x) = P(x) * A
F (x) = (πd^2 / 4) * P_i * (1 - (x/d)^2 / 25)
Work done = integral ((πd^2 / 4) * P_i * (1 - (x/d)^2 / 25) ) . dx
For Limits 0 < x < 5d
Work done = (πd^2 / 4) * P_i integral ( (1 - (x/d)^2) / 25)) . dx
Integrate the function wrt x
Work done = (πd^2 / 4) * P_i * ( x - d*(x/d)^3 / 75 )
Evaluate Limits 0 < x < 5d :
Work done = (πd^2 / 4) * P_i * (5d - 5d / 3)
Work done = (πd^2 / 4) * P_i * (10*d / 3)
Work done = (5 π / 6)d^3 * P_i
Input the values:
Work done = (5 π / 6)(0.05)^3 * (1.2*10^6)
Work done = 125π J
Answer:
C
Explanation:
Boolean Algebra deals with either a one or a zero and how to manipulate them in computers or elsewhere. The "choice" option may not work, since for text it must be enclosed in quotation marks, usually. For "again," it's text and not a 1 or 0. So, the answer is C, since this is a 0.
Answer:
810 g
Explanation:
Mass is the product of density and volume:
m = ρV
m = (8.1 g/cm³)(100 cm³) = 810 g
The mass of the chunk is 810 grams.