Ight bet
I told my friend she was drawing her eye brows to high and she look surprised
You don’t need a parachute to go skydiving but you do need it to go twice
People only call me ugly till they figure out how much money I make then that call me ugly and poor
You’re not completely useless you can always serve as a bad example
Answer: V = 504m/a
F = 4N
Explanation: please find the attached file for the solution
this is an equation that you need to solve for motional emf. motional emf=vBL, where v is velocity in meters/second, B is magnetic field in Teslas and L is length or distance the rails are apart from each other. when we plug everything into the formula given above, we get: motional emf=5m/s*0.80T*0.20m. solving all this we get 0.8 volts. pretty sure that since they are giving you the direction of the field, they want to know which way the current will flow . since the conductor is moving from left to right the area of the field is increasing which means magnetic flux is increasing as Ф(magnetic flux)=B(magnetic field)*A(area)*cosФ(little phi is the angle to the normal. in this case little fee is 0 degrees so the cosФ doesn't matter). so ↑Ф=B↑A. if magnetic flux is increasing, the induced magnetic field is in the opposite direction as the original magnetic field meaning the induced magnetic field will be out of the page. using the right hand rule which says that if the field is in to the page, the current should go clockwise and if the field is out of the page, the current is counterclockwise so that means that the current should be going counter clockwise since the induced field is going out of the screen. the top of the conducting wire will have its current go to the left and the bottom of the conducting wire will have the current go to the right.
Answer:
f ’= 97.0 Hz
Explanation:
This is an exercise of the doppler effect use the frequency change due to the relative movement of the fort and the observer
in this case the source is the police cases that go to vs = 160 km / h
and the observer is vo = 120 km / h
the relationship of the doppler effect is
f ’= f₀ (v + v₀ / v-
)
let's reduce the magnitude to the SI system
v_{s} = 160 km / h (1000 m / 1km) (1h / 3600s) = 44.44 m / s
v₀ = 120 km / h (1000m / 1km) (1h / 3600s) = 33.33 m / s
we substitute in the equation of the Doppler effect
f ‘= 100 (330+ 33.33 / 330-44.44)
f ’= 97.0 Hz