The textbook Would most likely have more gravitational potential energy because it is heavier. Things that are heavier have a larger gravitational pull and are pulled to the earth faster
Answer:
To the right
Explanation:
CH₃OH(g) + heat <=> CO(g) + 2H₂(g)
According to Le Chatelier's principle, a decrease in pressure will shift the equilibrium position to the side where there is a higher volume.
From the balanced equation above,
Volume of reactant = 1
Volume of product = 1 + 2 = 3
From the above, we can see that the volume of the gasous product is higher than the volume of the gasous reactant.
Therefore, a decrease in the pressure of the system will shift the equilibrium position to the right.
Longer, this is because the H in HNO2 is bonded with an oxygen, no longer allowing this structure to have a resonance structure.
NO2 on the other hand has one double bond and one single bond, so it has a resonance structure. And resonance structures are actually one structure so there isn't really a single and double bond, it's actually a 1 and 1/2 bond that calls for a higher bond order.
And I higher bond order will result in a shorter lengths!
I hope this helps out!!! And just out of curiosity, is this off of an AP FRQ packet??
The answer to the problem is 100