B because once the circuit is burned the lights will all go of
Answer:
The structure with the ring flipped is the most stable
Explanation:
We have the trans 1,2 - dimethylcyclohexane. With the wedge/dash structure we could not figure is this form is stable (If we do a comparison with the cis structure). But when we do a chair structure and ring flipped structure, this is easier to look.
The picture attached shows the structures, they are labeled as 1, 2 and 3, according to this problem.
In the chair structure, according to the picture below, you can see that both methyls are heading in the axial positions of the ring (One facing upward and the other downward). This is pretty stable, however, when the methyls are in those positions, the methyl position 1, can undergoes an 1,3 diaxial interactions with the hydrogens atoms (They are not drawn, but still are there), so this interaction makes this structure a little less stable that it can be.
On the other side, the ring flipped structure, we can see that both methyls are in the equatorials positions of the ring, and in these positions, it can avoid the 1,4 diaxial interactions with the hydrogens atoms, making this structure the most stable structure.
Hope this helps
Answer:
Option b. Decomposition
Followed by a reduction process using charcoal
Explanation:
Lead can be obtained from lead nitrate by thermal decomposition of lead nitrate as shown below:
2Pb(NO3)2 —> 2PbO + 4NO2 + O2
The PbO obtained is reduced by charcoal(C) to obtain the metallic Pb as shown below:
2PbO + C —> Pb + CO2
Answer:
B.3/5p
Explanation:
For this question, we have to remember <u>"Dalton's Law of Partial Pressures"</u>. This law says that the pressure of the mixture would be equal to the sum of the partial pressure of each gas.
Additionally, we have a <em>proportional relationship between moles and pressure</em>. In other words, more moles indicate more pressure and vice-versa.

Where:
=Partial pressure
=Total pressure
=mole fraction
With this in mind, we can work with the moles of each compound if we want to analyze the pressure. With the molar mass of each compound we can calculate the moles:
<u>moles of hydrogen gas</u>
The molar mass of hydrogen gas (
) is 2 g/mol, so:

<u>moles of oxygen gas</u>
The molar mass of oxygen gas (
) is 32 g/mol, so:

Now, total moles are:
Total moles = 2 + 3 = 5
With this value, we can write the partial pressure expression for each gas:


So, the answer would be <u>3/5P</u>.
I hope it helps!
Answer:
Mole of the H2O = 4.5
Number of molecules =4.5 multipled by avogadro's number.