Kilogram(kg)
It's not the SI unit of mass in the metric system however.
True is the correct answer
<h2>
Answer:</h2>
0.126m
<h2>
Explanation:</h2>
According to Hooke's law, the force (F) acting on a spring to cause an extension or compression (e) is given by;
F = k x e -------------------(i)
Where;
k = the spring's constant.
From the question, the force acting on the spring is the weight(W) of the mass. i.e
F = W -----------------------(ii)
<em>But;</em>
W = m x g;
where;
m = mass of the object
g = acceleration due to gravity [usually taken as 10m/s²]
<em>From equation (ii), it implies that;</em>
F = W = m x g
<em>Now substitute F = m x g into equation(i) as follows;</em>
F = k x e
m x g = k x e ------------------(iii)
<em>From the question;</em>
m = m1 = 3.5kg
k = 278N/m
<em>Substitute these values into equation (iii) as follows;</em>
3.5 x 10 = 278 x e
35 = 278e
<em>Now solve for e;</em>
e = 35/278
e = 0.126m
Therefore, the distance the spring is stretched from its unstretched length (which is the same as the extension of the spring) is 0.126m
Answer:
True
Explanation:
Momentum of an object can be defined as the product of its mass and velocity at which it is travelling. With that in mind, momentum = 3*100=300(kg⋅m/s).
One thing to note is the units mentioned. The SI unit of momentum is kg * m/s as it is the product of mass(kilograms) and velocity(meter per second) and not Newton.
Answer:
1.95 kg
Explanation:
Momentum is conserved.
m₁ u₁ + m₂ u₂ = m₁ v₁ + m₂ v₂
0 = (74.9) (-0.215) + m (8.25)
m = 1.95