Answer:
The correct answer is: 1.316 . 10⁻³ m³/kg.
Explanation:
The density (ρ) of a substance is the ratio of its <em>mass (m)</em> to its <em>volume (V)</em>. At constant temperature and pressure, its value is constant and it is an intrinsic property of materials. The units of density are kg/m³.

The specific volume (ν) of a substance is the ratio of its <em>mass</em> to its <em>volume</em>. We can see that it is the reciprocal of density and an intrinsic property of matter as well. Therefore, the units of specific volume are m³/kg.

Given we know the density of the liquid, we can use this relationship to find out its specific volume:

Here, we use the mole as we would use any other collective number: a dozen eggs; a Bakers' dozen; a Botany Bay dozen.
Of course, the mole specifies a much larger quantity, and if I have a mole of stuff then I have
6.022
×
10
23
individual items of that stuff. We can also specify an equivalent mass, because we also know the mass of a mole of iron, and a mole of oxygen etc........The mole is thus the link between the macro world of grams and kilograms and litres, that which we can measure out in the lab, to the micro world of atoms, and molecules, that which we can perceive only indirectly.
Here we have the formula unit
F
e
2
(
S
O
4
)
3
. If there is a mole of formula units, there are necessarily 2 moles of iron atoms, 3 sulfate ions,.......etc.
Answer:

Explanation:
The molecular mass of a monomer unit is:
C₂H₃Cl = 2×12.01 + 3×1.008 + 35.45 = 24.02 + 3.024 + 35.45 = 62.494 u
For 1565 units,

Answer:
The mass of an atom is found in its nucleus.
Explanation:
An atom is made of three different particles: protons, neutrons and electrons.
Protons (positive charge) and neutrons (no charge) each have a mass of 1 AMU. They are both found in the nucleus (centre) of the atom.
Electrons (negative charge) are considered to have a mass of 0. Their mass is not actually 0, but very close so we do not count them. They are not in the nucleus, but found in shells surrounding the atom.
To calculate the mass of an atom, we add the number of protons and the number of electrons.
m = P + N