Answer:
Option A=> -NHCOCH3 and option C = -CH3.
Explanation:
The option A that is -NHCOCH3 is CORRECT because it possesses lone pair of electron with the exception of group 7A elements. It is this lone pair that is used in the Activation of the ring towards substitution. Other groups that falls into this group are; OCH3, alkyls and many others.
Option B that is -COOH is good group for withdrawal of electron through Resonance. Other examples are NO2, -CN and SO3H.
Option C falls to the same category as option A above that is Activation of the ring towards substitution.
Option D falls to the same category as option B above that is group for withdrawal of electron through Resonance.
Explanation:If the mass of the object stays the same but the volume of the object decreases then its density becomes greater. If the volume of the object stays the same but the mass of the object increases then its density becomes greater.
Explanation:
The enzyme 's active site binds to the substrate. Increasing the temperature generally increases the rate of a reaction, but dramatic changes in temperature and pH can denature an enzyme, thereby abolishing its action as a catalyst. ... When an enzyme binds its substrate it forms an enzyme-substrate complex.
- friend,please mark my answer in brainliest answers
- friend,please follow me
- friend,please thanks this answer
- friend,please vote it 5 star
Answer:
See explanation.
Explanation:
For the ideal gas law (PV = nRT), we can notice that when the temperatures increases, the pressure or the volume must increase.
For the container with constant volume, the pressure will increase. Because density is mass/volume, in this container the density will not change.
For the other container, the pressure must be the same as the external, so it will not change, then the volume must increase. When the volume increases, the density decreases (density = mass/volume), so the pressure doesn't change and the density decreases.
C.
Because the spinal cord functions primarily in the transmission of neural signals between the brain and the rest of the body