Answer:
Here Strain due to testing is greater than the strain due to yielding that is why computation of load is not possible.
Explanation:
Given that
Yield strength ,Sy= 240 MPa
Tensile strength = 310 MPa
Elastic modulus ,E= 110 GPa
L=380 mm
ΔL = 1.9 mm
Lets find strain:
Case 1 :
Strain due to elongation (testing)
ε = ΔL/L
ε = 1.9/380
ε = 0.005
Case 2 :
Strain due to yielding
ε '=0.0021
Here Strain due to testing is greater than the strain due to yielding that is why computation of load is not possible.
For computation of load strain due to testing should be less than the strain due to yielding.
Answer:
Explanation:
Given
Frequency of SHM is
Amplitude of SHM is
Cup begins to slip when it overcomes the friction force
Friction force
Applied force
and maximum acceleration during SHM is
Answer:
<em>Velocity is the rate at which the position changes</em>
<em>Velocity is the rate at which the position changesWhy do we need</em>
<em>Velocity is the rate at which the position changesWhy do we needVectors make it convenient to handle quantities going in different directions</em><em>.</em><em>.</em><em> </em>
Explanation:
Thank you!
Answer: 2, the nuclear strong force drops to practically nothing at large distances.
Explanation: The protons and neutrons in the nucleus share subatomic particles called pions. This exchange is what keeps the protons and neutrons stuck together in the nucleus. Despite the strong force being the strongest force, it has a very small range. This is because pions have very short lifespans. So, the strong force would have literally no effect at large distances.
Hope that helped! :)