To solve this problem, we apply the concepts related to the sum of forces and balance in a diagram that will be attached, in order to identify the behavior, direction and sense of the forces. The objective is to find an expression that is in terms of the mass, the angle, the coefficient of friction and the length that allows us to identify when the ladder begins to slip. For equilibrium of the ladder we have,



Now we have that


And for equilibrium of the two forces we have finally

Rearranging to find the distance,


So if we have that the frictional force is equivalent to




With this value we have that


Therefore can go around to 5.19m before the ladder begins to slip.
Average acceleration = (change in speed) / (time for the change) .
Average acceleration = (13.2 - 6) / (6.32) = 7.2 / 6.32 = about <em>1.139... m/s²</em> .
The concept required to solve this problem is linked to inductance. This can be defined as the product between the permeability in free space by the number of turns squared by the area over the length. Recall that Inductance is defined as the opposition of a conductive element to changes in the current flowing through it. Mathematically it can be described as

Here,
= Permeability at free space
N = Number of loops
A = Cross-sectional Area
l = Length
Replacing with our values we have,



Therefore the Inductance is 
Answer:
(1) passed through the foil
Explanation:
Ernest Rutherford conducted an experiment using an alpha particle emitter projected towards a gold foil and the gold foil was surrounded by a fluorescent screen which glows upon being struck by an alpha particle.
- When the experiment was conducted he found that most of the alpha particles went away without any deflection (due to the empty space) glowing the fluorescent screen right at the point of from where they were emitted.
- While a few were deflected at reflex angle because they were directed towards the center of the nucleus having the net effective charge as positive.
- And some were acutely deflected due to the field effect of the positive charge of the proton inside the nucleus. All these conclusions were made based upon the spot of glow on the fluorescent screen.