1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
inna [77]
3 years ago
8

The buoyant force on an object placed in a liquid is (a) always equal to the volume of the liquid displaced. (b) always equal to

the weight of the object. (c) always equal to the weight of the liquid displaced. (d) always less than the volume of the liquid displaced.
Physics
1 answer:
Nana76 [90]3 years ago
7 0

Answer:

(c) always equal to the weight of the liquid displaced.

Explanation:

Archimedes principle (also called physical law of buoyancy) states that when an object is completely or partially immersed in a fluid (liquid, e.t.c), it experiences an upthrust (or buoyant force) whose magnitude is equal to the weight of the fluid displaced by that object.

Therefore, from this principle the best option is C - always equal to the weight of the liquid displaced.

You might be interested in
Does an eclipse occur every time the moon is in the new or full moon phase?
harina [27]

Answer:

solar eclipse mostly occurs when the moon gets between Earth and the sun, and the moon casts a shadow over Earth. A solar eclipse can only take place at the phase of new moon, when the moon passes directly between the sun and Earth and its shadows fall upon Earth's surface.

7 0
3 years ago
Read 2 more answers
Describe four energy changes that happen in the process.
musickatia [10]

Driving a motor........

chemical energy is converted into kinetic energy.

Falling off of cliff

.........gravitational potential energy is converted into kinetic energy.

Hydroelectric energy generation

.......gravitational potential energy is converted into kinetic energy (i.e. driving a generator), which is then converted into electrical energy.

Nuclear power generation

.........mass is converted into energy, which then drives a steam turbine, which is then converted into electrical energy.

7 0
3 years ago
Describe the mechanical energy of a roller coaster car immediately before it begins traveling down a long track
GrogVix [38]
At the top of the hill, the cars possess a large quantity of potential energy. Potential energy - the energy of vertical position - is dependent upon the mass of the object and the height of the object. The car's large quantity of potential energy is due to the fact that they are elevated to a large height above the ground. As the cars descend the first drop they lose much of this potential energy in accord with their loss of height. The cars subsequently gain kinetic energy. Kinetic energy - the energy of motion - is dependent upon the mass of the object and the speed of the object. The train of coaster cars speeds up as they lose height. Thus, their original potential energy (due to their large height) is transformed into kinetic energy (revealed by their high speeds). As the ride continues, the train of cars are continuously losing and gaining height. Each gain in height corresponds to the loss of speed as kinetic energy (due to speed) is transformed into potential energy (due to height). Each loss in height corresponds to a gain of speed as potential energy (due to height) is transformed into kinetic energy (due to speed). A roller coaster ride also illustrates the work and energy relationship. The work done by external forces is capable of changing the total amount of mechanical energy from an initial value to some final value. The amount of work done by the external forces upon the object is equal to the amount of change in the total mechanical energy of the object. The relationship is often stated in the form of the following mathematical equation.

KEinitial + PEinitial + Wexternal = KEfinal + PEfinal

The left side of the equation includes the total mechanical energy (KEinitial + PEinitial) for the initial state of the object plus the work done on the object by external forces (Wexternal) while the right side of the equation includes the total mechanical energy (KEfinal + PEfinal) for the final state of the object.

Once a roller coaster has reached its initial summit and begins its descent through loops, turns and smaller hills, the only forces acting upon the coaster cars are the force of gravity, the normal force and dissipative forces such as air resistance. The force of gravity is an internal force and thus any work done by it does not change the total mechanical energy of the train of cars. The normal force of the track pushing up on the cars is an external force. However, it is at all times directed perpendicular to the motion of the cars and thus is incapable of doing any work upon the train of cars. Finally, the air resistance force is capable of doing work upon the cars and thus draining a small amount of energy from the total mechanical energy which the cars possess. However, due to the complexity of this force and its small contribution to the large quantity of energy possessed by the cars, it is often neglected. By neglecting the influence of air resistance, it can be said that the total mechanical energy of the train of cars is conserved during the ride. That is to say, the total amount of mechanical energy (kinetic plus potential) possessed by the cars is the same throughout the ride. Energy is neither gained nor lost, only transformed from kinetic energy to potential energy and vice versa.

The conservation of mechanical energy by the coaster car in the above animation can be studied using a calculator. At each point in the ride, the kinetic and potential energies can be calculated using the following equations.

<span> KE = 0.5 * mass * (speed)^2 PE = mass * g * height</span>

If the acceleration of gravity value of 9.8 m/s/s is used along with an estimated mass of the coaster car (say 500 kg), the kinetic energy and potential energy and total mechanical energy can be determined

5 0
3 years ago
Electromagnetic radiation from a 8.25 mW laser is concentrated on a 1.23 mm2 area. Suppose a 1.12 nC static charge is in the bea
mylen [45]

Answer:

The maximum magnetic force is 2.637 x 10⁻¹² N

Explanation:

Given;

Power, P = 8.25 m W = 8.25 x 10⁻³ W

charge of the radiation, Q = 1.12 nC = 1.12 x 10⁻⁹ C

speed of the charge, v = 314 m/s

area of the conecntration, A = 1.23 mm² = 1.23 x 10⁻⁶ m²

The intensity of the radiation is calculated as;

I = \frac{P}{A} \\\\I = \frac{8.25 \times 10^{-3} \ W}{1.23 \ \times 10^{-6} \ m^2} \\\\I = 6,707.32 \ W/m^2

The maximum magnetic field is calculated using the following intensity formula;

I = \frac{cB_0^2}{2\mu_0} \\\\B_0 = \sqrt{\frac{2\mu_0 I}{c} } \\\\where;\\\\c \ is \ speed \ of \ light\\\\\mu_0 \ is \ permeability \ of \ free \ space\\\\B_0 \ is \ the \ maximum \ magnetic \ field\\\\B_0 = \sqrt{\frac{2 \times 4\pi \times 10^{-7} \times 6,707.32 }{3\times 10^8} } \\\\B_0 = 7.497 \times 10^{-6} \ T

The maximum magnetic force is calculated as;

F₀ = qvB₀

F₀ = (1.12 x 10⁻⁹) x (314) x (7.497 x 10⁻⁶)

F₀ = 2.637 x 10⁻¹² N

5 0
3 years ago
A wave that is traveling fast can be said to have a high ___
S_A_V [24]

A wave that is traveling fast can be said to have a high speed.<em> (b) </em>

Just like a car, motorcycle, or freight train that is traveling fast.

3 0
3 years ago
Other questions:
  • What is the net force acting on a 2kg obgect that accelerates from rest at a rate of 5m/s/s/?
    5·1 answer
  • Affirmations and strokes relate to the power of adult
    15·1 answer
  • A wave with a greater amplitude will transfer . . . . \
    5·1 answer
  • a .1-kilogram ball rolls across the floor at a speed of 2 meters per second. Another .1 kilogram ball rests on a shelf 1 meter a
    8·1 answer
  • A coin slides over a frictionless plane and across an xy coordinate system from the origin to a point with xy coordinates (4.0 m
    6·1 answer
  • Water is made of two hydrogen atoms and one oxygen atom bonded together. Julia is describing how water undergoes a physical chan
    15·2 answers
  • Anna pours herself some room-temperature soda from a bottle and adds four ice cubes. In a few minutes the ice cubes are smaller
    12·1 answer
  • Which of the following could describe the velocity of an object?
    12·2 answers
  • The speed limit on many roads in a town 13.5 m/s outside schools this is limit is often reduced by one third
    11·1 answer
  • How does a push or pull affect motion?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!