Answer:
31395 J
Explanation:
Given data:
mass of water = 150 g
Initial temperature = 25 °C
Final temperature = 75 °C
Energy absorbed = ?
Solution:
Formula:
q = m . c . ΔT
we know that specific heat of water is 4.186 J/g.°C
ΔT = final temperature - initial temperature
ΔT = 75 °C - 25 °C
ΔT = 50 °C
now we will put the values in formula
q = m . c . ΔT
q = 150 g × 4.186 J/g.°C × 50 °C
q = 31395 J
so, 150 g of water need to absorb 31395 J of energy to raise the temperature from 25°C to 75 °C .
Answer:
17.1 mol
Explanation:
(8.68g/mL * 125 mL) = 1085 g
1085 g/ (63.55 g/mol) = 17.1 mol
Answer:
The net energy is 2.196 eV
Explanation:
Basically, the energy of an atom increases when it absorbs a photon. In addition, the wavelength of the emitted photon is longer such that the atom absorbed a net energy in the process.
Using:
ΔE = h*c*(1/λ
- 1/λ
)
where:
ΔE is the net energy in eV (electron-volt). 1 eV is equivalent to 1.602*
J.
h = 4.135*
eVs
c = 3*
m/s
λ
= 300 nm = 300*
m
λ
= 640 nm = 640*
m
Thus:
ΔE = 4.135*
eVs*3*
m/s*(
)
ΔE = 4.135*
*3*
*1.77*
eV = 2.196 eV
Jupiter------------------------
True! You can use the percentage to determine the amount of moles of each substance in the compound, and then use that information to find the empirical formula.