1) Use the fact that 1 mol of gas at STP occupies 22.4 liter
=> 1 mol / 22.4 l = x / 0.125 l => x = 0.125 l * 1 mol / 22.4 l = 0.00558 mol
2) Now use the molar mass of the gas
molar mass of CO2 ≈ 44 g / mol
Formula: molar mass = mass in grams / number of moles =>
mass in grams = molar mass * number of moles = 44 g/mol * 0.00558 moles
mass = 0.246 g
Answer: 0.246 g
Answer:
There is 50.2 kJ heat need to heat 300 gram of water from 10° to 50°C
Explanation:
<u>Step 1: </u>Data given
mass of water = 300 grams
initial temperature = 10°C
final temperature = 50°C
Temperature rise = 50 °C - 10 °C = 40 °C
Specific heat capacity of water = 4.184 J/g °C
<u>Step 2:</u> Calculate the heat
Q = m*c*ΔT
Q = 300 grams * 4.184 J/g °C * (50°C - 10 °C)
Q = 50208 Joule = 50.2 kJ
There is 50.2 kJ heat need to heat 300 gram of water from 10° to 50°C
Answer:
The first thing that you need to do here is to figure out the mass of the sample.
To do that, you can use its volume and the fact that aluminium is said to have a density of
2.702 g cm
−
3
, which implies that every
1 cm
3
of aluminium has a mass of
2.702 g
.
Explanation:
Answer:
direct effect
Increasing the pressure increases the boiling point and decreasing the pressure decreases the boiling point