Answer:
metal
Explanation:
A yoke assembly are use in an assembly of a rack and pinion steering gear for a vehicle. The spring loaded yokes guided with a rack are made up of metals. It consists of a spring made of steel which pushes the back side of the rack to reduce the play that occurs between the pinion and the rack and still allow the relative motion.
Answer: Inherent width in the emission line: 9.20 × 10⁻¹⁵ m or 9.20 fm
length of the photon emitted: 6.0 m
Explanation:
The emitted wavelength is 589 nm and the transition time is ∆t = 20 ns.
Recall the Heisenberg's uncertainty principle:-
∆t∆E ≈ h ( Planck's Constant)
The transition time ∆t corresponds to the energy that is ∆E
.
The corresponding uncertainty in the emitted frequency ∆v is:
∆v= ∆E/h = (5.273*10^-27 J)/(6.626*10^ J.s)= 7.958 × 10^6 s^-1
To find the corresponding spread in wavelength and hence the line width ∆λ, we can differentiate
λ = c/v
dλ/dv = -c/v² = -λ²/c
Therefore,
∆λ = (λ²/c)*(∆v) = {(589*10⁻⁹ m)²/(3.0*10⁸ m/s)} * (7.958*10⁶ s⁻¹)
= 9.20 × 10⁻¹⁵ m or 9.20 fm
The length of the photon (<em>l)</em> is
l = (light velocity) × (emission duration)
= (3.0 × 10⁸ m/s)(20 × 10⁻⁹ s) = 6.0 m
Answer:
The total energy of the motor of the electric vehicle is 1.902 × 10⁸ joules.
Explanation:
Power is the rate of change of work in time, since given input is average power, the total energy (
) of the motor of the electric vehicle, measured in joules, is determined by this formula:

Where:
- Average power, measured in watts.
- Time, measured in seconds.
Now, let convert average power and time into watts and seconds, respectively:
Average Power


Time


Then, the total energy is:


The total energy of the motor of the electric vehicle is 1.902 × 10⁸ joules.
Explanation:
Consider a fluid of density, ρ moving with a velocity, U over a flat plate of length, L.
Let the Kinematic viscosity of the fluid be ν.
Let the flow over the fluid be laminar for a distance x from the leading edge.
Now this distance is called the critical distance.
Therefore, for a laminar flow, the critical distance can be defined as the distance from the leading edge of the plate where the Reynolds number is equal to 5 x 
And Reynolds number is a dimensionless number which determines whether a flow is laminar or turbulent.
Mathematically, we can write,
Re = 
or 5 x
=
( for a laminar flow )
Therefore, critical distance

So x is defined as the critical distance upto which the flow is laminar.