Answer:
Mass = 245.72 g
Explanation:
Given data:
Mass of SrCl₂ react = ?
Mass of H₂SO₄ = 300.0 g
Solution:
SrCl₂ + 2H₂SO₄ → 2HCl + Sr(HSO₄)₂
Number of moles of H₂SO₄:
Number of moles = mass/molar mass
Number of moles = 300.0 g/ 98.079 g/mol
Number of moles = 3.1 mol
Now we will compare the moles of SrCl₂ and H₂SO₄.
H₂SO₄ : SrCl₂
2 : 1
3.1 : 1/2×3.1 = 1.55 mol
Mass of SrCl₂:
Mass = number of moles × molar mass
Mass = 1.55 mol × 158.53 g/mol
Mass = 245.72 g
Answer:
E. Q < K and reaction shifts right
Explanation:
Step 1: Write the balanced equation
A(s) + 3 B(l) ⇄ 2(aq) + D(aq)
Step 2: Calculate the reaction quotient (Q)
The reaction quotient, as the equilibrium constant (K), only includes aqueous and gaseous species.
Q = [C]² × [D]
Q = 0.64² × 0.38
Q = 0.15
Step 3: Compare Q with K and determine in which direction will shift the reaction
Since Q < K, the reaction will shift to the right to attain the equilibrium.
Answer:
friction
Explanation:
the resistance that one surface or object encounters when moving over another.
Answer:
2.78 moles of water are produced.
Explanation:
Given data:
Number of moles of H₂O produced = ?
Number of moles of oxygen react = 3.25 mol
Solution:
Chemical equation:
2C₂H₆ + 7O₂ → 4CO₂ + 6H₂O
Now we will compare the moles of water with oxygen.
O₂ : H₂O
7 : 6
3.25 : 6/7×3.25 = 2.78 mol
Answer:Kinetic energy = (1/2)*mass*velocity^2
KE = (1/2)mv^2
KE = (1/2)(478)(15)^2
KE = 53775J
Explanation:
Kinetic energy = (1/2)*mass*velocity^2
KE = (1/2)mv^2
KE = (1/2)(478)(15)^2
KE = 53775J