The nuclei of atoms also contain neutrons, which help hold the nucleus together. ... The total weight of an atom is called the atomic weight. It is approximately equal to the number of protons and neutrons, with a little extra added by the electrons.
The mass of a given atom, measured on a scale in which the hydrogen atom has the weight of one. Because most of the mass in an atom is in the nucleus, and each proton and neutron has an atomic weight near one, the atomic weight is very nearly equal to the number of protons and neutrons in the nucleus.
A physical property is any property that is measurable, whose value describes a state of a physical system. The changes in the physical properties of a system can be used to describe its changes between momentary states. Physical properties are often referred to as observables. They are not modal properties.
Answer:
Solid metal
Explanation:
The reduced form of metal ions is the metal in elemental state (simple substance). So, if you have a solution with metal ions and they are reduced, you probably will see the deposition of the metal. For example: if you have a solution with sodium ions (Na⁺), and the ions are then reduced, you will see the aparition of a solid phase of metallic sodium (Na(s)), according to the following half-reaction:
Na⁺ + e- → Na(s)
Answer:
ionic
it is a mixture of a nonmetal and a metal which is what makes ionic compounds
covalent is a nonmetal and nonmetal
Explanation:
Answer:
See explanation
Explanation:
The reason why the droplets are spherical is the surface area to volume ratio of the falling droplet in a gravitational field. Recall that a sphere has a small surface area to volume ratio.
Between X and Y, one key difference that will define the rate at which the two drops of liquid falls is the viscosity of the fluid. Since the images were not attached, I can not really tell what liquid droplet is more flatter than the other.
However, the liquid with a greater surface tension will form larger droplets and experience a greater air resistance as the droplet falls. Hence the less the surface tension, the flatter the droplets. Cohesive forces pull molecules of a liquid droplets inwards leading to a more spherical shape and reducing the surface area. Surface tension is therefore the reason why liquids form droplets.