Answer:
x = 0.176 m
Explanation:
For this exercise we will take the condition of rotational equilibrium, where the reference system is located on the far left and the wire on the far right. We assume that counterclockwise turns are positive.
Let's use trigonometry to decompose the tension
sin 60 =
/ T
T_{y} = T sin 60
cos 60 = Tₓ / T
Tₓ = T cos 60
we apply the equation
∑ τ = 0
-W L / 2 - w x + T_{y} L = 0
the length of the bar is L = 6m
-Mg 6/2 - m g x + T sin 60 6 = 0
x = (6 T sin 60 - 3 M g) / mg
let's calculate
let's use the maximum tension that resists the cable T = 900 N
x = (6 900 sin 60 - 3 200 9.8) / (700 9.8)
x = (4676 - 5880) / 6860
x = - 0.176 m
Therefore the block can be up to 0.176m to keep the system in balance.
The ability to sustain life
(ie water, shelter, food, basic needs)
Hope this helped!
:-)
Answer:
12 ml
Explanation:
The initial volume in the cylinder is 20 ml
adding the rock adds volume to the cylinder
the new volume is 32 ml .....the increase in volume is the volume of the rock : 32 - 20 = 12 ml volume of rock
Answer:
128.21 m
Explanation:
The following data were obtained from the question:
Initial temperature (θ₁) = 4 °C
Final temperature (θ₂) = 43 °C
Change in length (ΔL) = 8.5 cm
Coefficient of linear expansion (α) = 17×10¯⁶ K¯¹)
Original length (L₁) =.?
The original length can be obtained as follow:
α = ΔL / L₁(θ₂ – θ₁)
17×10¯⁶ = 8.5 / L₁(43 – 4)
17×10¯⁶ = 8.5 / L₁(39)
17×10¯⁶ = 8.5 / 39L₁
Cross multiply
17×10¯⁶ × 39L₁ = 8.5
6.63×10¯⁴ L₁ = 8.5
Divide both side by 6.63×10¯⁴
L₁ = 8.5 / 6.63×10¯⁴
L₁ = 12820.51 cm
Finally, we shall convert 12820.51 cm to metre (m). This can be obtained as follow:
100 cm = 1 m
Therefore,
12820.51 cm = 12820.51 cm × 1 m / 100 cm
12820.51 cm = 128.21 m
Thus, the original length of the wire is 128.21 m
Answer:
a) For y = 102 mA, R = 98.039 ohms
For y = 97 mA, R = 103.09 ohms
b) Check explanatios for b
Explanation:
Applied voltage, V = 10 V
For the first measurement, current 
According to ohm's law, V = IR
R = V/I
Here, 

For the second measurement, current 


b) ![y = \left[\begin{array}{ccc}y_{1} &y_{2} \end{array}\right] ^{T}](https://tex.z-dn.net/?f=y%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dy_%7B1%7D%20%26y_%7B2%7D%20%5Cend%7Barray%7D%5Cright%5D%20%5E%7BT%7D)
![y = \left[\begin{array}{ccc}y_{1} \\y_{2} \end{array}\right]](https://tex.z-dn.net/?f=y%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dy_%7B1%7D%20%5C%5Cy_%7B2%7D%20%5Cend%7Barray%7D%5Cright%5D)
![y = \left[\begin{array}{ccc}102*10^{-3} \\97*10^{-3} \end{array}\right]](https://tex.z-dn.net/?f=y%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D102%2A10%5E%7B-3%7D%20%5C%5C97%2A10%5E%7B-3%7D%20%20%5Cend%7Barray%7D%5Cright%5D)
A linear equation is of the form y = Gx
The nominal value of the resistance = 100 ohms
![x = \left[\begin{array}{ccc}100\end{array}\right]](https://tex.z-dn.net/?f=x%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D100%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}102*10^{-3} \\97*10^{-3} \end{array}\right] = \left[\begin{array}{ccc}G_{1} \\G_{2} \end{array}\right] \left[\begin{array}{ccc}100\end{array}\right]\\\left[\begin{array}{ccc}G_{1} \\G_{2} \end{array}\right] = \left[\begin{array}{ccc}102*10^{-5} \\97*10^{-5} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D102%2A10%5E%7B-3%7D%20%5C%5C97%2A10%5E%7B-3%7D%20%20%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7DG_%7B1%7D%20%5C%5CG_%7B2%7D%20%20%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D100%5Cend%7Barray%7D%5Cright%5D%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7DG_%7B1%7D%20%5C%5CG_%7B2%7D%20%20%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D102%2A10%5E%7B-5%7D%20%5C%5C97%2A10%5E%7B-5%7D%20%20%5Cend%7Barray%7D%5Cright%5D)