Answer:
4.254320865115cm or simplied 4.25cm
Explanation:
Answer:
4e-5 is the length in meters
Have a nice day! :)
The answer is B
To write the equilibrium constant for an equation, all you have to do is divide the products by the reactants. The reactants are always on the left side, and the products are always on the right side. The coefficients of the elements will be written as the exponent of that same element. However, in this equation, we do not have to write any exponents, as there are no coefficient but 1.
Answer:
The enthalpy of the reaction is coming out to be -380.16 kJ.
Explanation:
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as
The equation used to calculate enthalpy change is of a reaction is:
For the given chemical reaction:
The equation for the enthalpy change of the above reaction is:
We are given:
Putting values in above equation, we get:
Hence, the enthalpy of the reaction is coming out to be -380.16 kJ.
<span>A fast moving stream of air has a lower air pressure than a
slower air stream. As the stream of air moved over the
top of the paper, the air pressure over the paper dropped. The
air pressure underneath the paper stayed the same. The
greater air pressure underneath lifted the paper strip and it
rose. The idea that a moving air stream has lower air pressure
than air that is not moving is called “Bernoulli’s Principle”.
</span>The
force of the moving air underneath the balloon was enough to
hold it up. The weight added by the paper clip prevents
the balloon from going too high. But that is only part
of the story. The balloon stays inside the moving stream
of air because the pressure inside is the air stream is lower
than the still air around it. As the balloon moves toward the
still air outside of the air stream, the higher pressure of
the still air forces the balloon back into the lower pressure
of the air stream. Bernoulli’s Principle at work again!