Answer:
Density is 7.15 g /mL.
Mass is 445.2 g.
Explanation:
Density:
Density is equal to the mass of substance divided by its volume.
Units:
SI unit of density is Kg/m3.
Other units are given below,
g/cm3, g/mL , kg/L
Formula:
D=m/v
D= density
m=mass
V=volume
Symbol:
The symbol used for density is called rho. It is represented by ρ. However letter D can also be used to represent the density.
Given data:
Mass of first zinc sample = 210.10 g
Mass of second zinc sample = 235.10 g
Combined volume = 62.3 mL
Density of combined sample ?
Mass of combined sample = ?
Solution:
Mass of combined sample = 210.10 g + 235.10 g = 445.2 g
density = mass / volume
density = 445.2 g / 62.3 mL
density = 7.15 g /mL
Answer:
Check the explanation
Explanation:
Kindly check the attached image below to see the step by step explanation to the question above.
Answer :
(a) The average rate will be:
![\frac{d[Br_2]}{dt}=9.36\times 10^{-5}M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D%3D9.36%5Ctimes%2010%5E%7B-5%7DM%2Fs)
(b) The average rate will be:
![\frac{d[H^+]}{dt}=1.87\times 10^{-4}M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BH%5E%2B%5D%7D%7Bdt%7D%3D1.87%5Ctimes%2010%5E%7B-4%7DM%2Fs)
Explanation :
The general rate of reaction is,

Rate of reaction : It is defined as the change in the concentration of any one of the reactants or products per unit time.
The expression for rate of reaction will be :
![\text{Rate of disappearance of A}=-\frac{1}{a}\frac{d[A]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20A%7D%3D-%5Cfrac%7B1%7D%7Ba%7D%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D)
![\text{Rate of disappearance of B}=-\frac{1}{b}\frac{d[B]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20B%7D%3D-%5Cfrac%7B1%7D%7Bb%7D%5Cfrac%7Bd%5BB%5D%7D%7Bdt%7D)
![\text{Rate of formation of C}=+\frac{1}{c}\frac{d[C]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20formation%20of%20C%7D%3D%2B%5Cfrac%7B1%7D%7Bc%7D%5Cfrac%7Bd%5BC%5D%7D%7Bdt%7D)
![\text{Rate of formation of D}=+\frac{1}{d}\frac{d[D]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20formation%20of%20D%7D%3D%2B%5Cfrac%7B1%7D%7Bd%7D%5Cfrac%7Bd%5BD%5D%7D%7Bdt%7D)
![Rate=-\frac{1}{a}\frac{d[A]}{dt}=-\frac{1}{b}\frac{d[B]}{dt}=+\frac{1}{c}\frac{d[C]}{dt}=+\frac{1}{d}\frac{d[D]}{dt}](https://tex.z-dn.net/?f=Rate%3D-%5Cfrac%7B1%7D%7Ba%7D%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D%3D-%5Cfrac%7B1%7D%7Bb%7D%5Cfrac%7Bd%5BB%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7B1%7D%7Bc%7D%5Cfrac%7Bd%5BC%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7B1%7D%7Bd%7D%5Cfrac%7Bd%5BD%5D%7D%7Bdt%7D)
From this we conclude that,
In the rate of reaction, A and B are the reactants and C and D are the products.
a, b, c and d are the stoichiometric coefficient of A, B, C and D respectively.
The negative sign along with the reactant terms is used simply to show that the concentration of the reactant is decreasing and positive sign along with the product terms is used simply to show that the concentration of the product is increasing.
The given rate of reaction is,

The expression for rate of reaction :
![\text{Rate of disappearance of }Br^-=-\frac{1}{5}\frac{d[Br^-]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20%7DBr%5E-%3D-%5Cfrac%7B1%7D%7B5%7D%5Cfrac%7Bd%5BBr%5E-%5D%7D%7Bdt%7D)
![\text{Rate of disappearance of }BrO_3^-=-\frac{d[BrO_3^-]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20%7DBrO_3%5E-%3D-%5Cfrac%7Bd%5BBrO_3%5E-%5D%7D%7Bdt%7D)
![\text{Rate of disappearance of }H^+=-\frac{1}{6}\frac{d[H^+]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20%7DH%5E%2B%3D-%5Cfrac%7B1%7D%7B6%7D%5Cfrac%7Bd%5BH%5E%2B%5D%7D%7Bdt%7D)
![\text{Rate of formation of }Br_2=+\frac{1}{3}\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20formation%20of%20%7DBr_2%3D%2B%5Cfrac%7B1%7D%7B3%7D%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)
![\text{Rate of formation of }H_2O=+\frac{1}{3}\frac{d[H_2O]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20formation%20of%20%7DH_2O%3D%2B%5Cfrac%7B1%7D%7B3%7D%5Cfrac%7Bd%5BH_2O%5D%7D%7Bdt%7D)
Thus, the rate of reaction will be:
![\text{Rate of reaction}=-\frac{1}{5}\frac{d[Br^-]}{dt}=-\frac{d[BrO_3^-]}{dt}=-\frac{1}{6}\frac{d[H^+]}{dt}=+\frac{1}{3}\frac{d[Br_2]}{dt}=+\frac{1}{3}\frac{d[H_2O]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20reaction%7D%3D-%5Cfrac%7B1%7D%7B5%7D%5Cfrac%7Bd%5BBr%5E-%5D%7D%7Bdt%7D%3D-%5Cfrac%7Bd%5BBrO_3%5E-%5D%7D%7Bdt%7D%3D-%5Cfrac%7B1%7D%7B6%7D%5Cfrac%7Bd%5BH%5E%2B%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7B1%7D%7B3%7D%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7B1%7D%7B3%7D%5Cfrac%7Bd%5BH_2O%5D%7D%7Bdt%7D)
<u>Part (a) :</u>
<u>Given:</u>
![\frac{1}{5}\frac{d[Br^-]}{dt}=1.56\times 10^{-4}M/s](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B5%7D%5Cfrac%7Bd%5BBr%5E-%5D%7D%7Bdt%7D%3D1.56%5Ctimes%2010%5E%7B-4%7DM%2Fs)
As,
![-\frac{1}{5}\frac{d[Br^-]}{dt}=+\frac{1}{3}\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B5%7D%5Cfrac%7Bd%5BBr%5E-%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7B1%7D%7B3%7D%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)
and,
![\frac{d[Br_2]}{dt}=\frac{3}{5}\frac{d[Br^-]}{dt}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D%3D%5Cfrac%7B3%7D%7B5%7D%5Cfrac%7Bd%5BBr%5E-%5D%7D%7Bdt%7D)
![\frac{d[Br_2]}{dt}=\frac{3}{5}\times 1.56\times 10^{-4}M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D%3D%5Cfrac%7B3%7D%7B5%7D%5Ctimes%201.56%5Ctimes%2010%5E%7B-4%7DM%2Fs)
![\frac{d[Br_2]}{dt}=9.36\times 10^{-5}M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D%3D9.36%5Ctimes%2010%5E%7B-5%7DM%2Fs)
<u>Part (b) :</u>
<u>Given:</u>
![\frac{1}{5}\frac{d[Br^-]}{dt}=1.56\times 10^{-4}M/s](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B5%7D%5Cfrac%7Bd%5BBr%5E-%5D%7D%7Bdt%7D%3D1.56%5Ctimes%2010%5E%7B-4%7DM%2Fs)
As,
![-\frac{1}{5}\frac{d[Br^-]}{dt}=-\frac{1}{6}\frac{d[H^+]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B5%7D%5Cfrac%7Bd%5BBr%5E-%5D%7D%7Bdt%7D%3D-%5Cfrac%7B1%7D%7B6%7D%5Cfrac%7Bd%5BH%5E%2B%5D%7D%7Bdt%7D)
and,
![-\frac{1}{6}\frac{d[H^+]}{dt}=\frac{3}{5}\frac{d[Br^-]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B6%7D%5Cfrac%7Bd%5BH%5E%2B%5D%7D%7Bdt%7D%3D%5Cfrac%7B3%7D%7B5%7D%5Cfrac%7Bd%5BBr%5E-%5D%7D%7Bdt%7D)
![\frac{d[H^+]}{dt}=\frac{6}{5}\times 1.56\times 10^{-4}M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BH%5E%2B%5D%7D%7Bdt%7D%3D%5Cfrac%7B6%7D%7B5%7D%5Ctimes%201.56%5Ctimes%2010%5E%7B-4%7DM%2Fs)
![\frac{d[H^+]}{dt}=1.87\times 10^{-4}M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BH%5E%2B%5D%7D%7Bdt%7D%3D1.87%5Ctimes%2010%5E%7B-4%7DM%2Fs)
Answer:
Isotopes are basically atoms of an element that have an unequal number of neutrons and protons. Of course the proton number remains the same, but the neutron number either decreases or increases, which leads to an overall change in mass. However, no chemical properties of the atom/element are changed as the electrons are the same number and do not react. In regards to Helium 4, the original number of neutrons in Helium is 2, and protons 2 as well. We see an equal number of neutrons and protons, hence an unchanged mass, and the element is <em>not</em> an isotope.
Water is the answer out of all the other options